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Tentative course overview

Topics:

@ Introduction
Search-based methods
Constrained satisfaction problems
Logic-based knowledge representation
Representing domains endowed with uncertainty.
Bayesian networks
Inference in Bayesian networks
Machine learning: Classification
Machine learning: Clustering
Planning
Multi-agent systems
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Clustering
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Clustering: Introduction

The objective of clustering is to find structure in the data.
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Examples:
@ Based on customer data, find groups of customers with similar profiles.
@ Based on image data, find groups of images with similar motif.

@ Based on article data, find groups of articles with the same topics.
e ...

MI Autumn 2019 Clustering



ris Data

of Iris.

first reported in:
Fisher,R.A. "The use of multiple measurements
in taxonomic problems" Annual Eugenics, 7

Measurement of petal width/length and sepal
width/length for 150 flowers of 3 different species
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(1936).
Attributes Class variable
SL SW PL PW Species
51 35 14 0.2 Setosa
49 3.0 14 0.2  Setosa
63 29 6.0 21 Virginica
63 25 49 15 \Versicolor



Unlabeled Iris

The Iris data with class labels removed:

Attributes
SL SW PL PW
51 35 14 0.2
49 3.0 14 02
6.3 29 6.0 21
6.3 25 49 15 -

PL
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Clustered lIris

A clustering of the data S = aq, ..., an consists of aset C = {c1,..., ¢} of cluster labels, and a
cluster assignmentca: S — C.
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The k-means algorithm
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Distance Function and Clustering

Instance Space

Within—cluster distances \OH

A candidate clustering (indicated by colors) of data cases in instance space. Arrows indicate
between- and within-cluster distances (selected).

General goal: find clustering with
@ large between-cluster variation (sum of between-cluster distances)
@ small within-cluster variation (sum of within-cluster distances)
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The k-means algorithm

We consider the scenario, where
@ the number k of clusters is known.
@ we have a distance measure d(x;, x;) between pairs of data points (feature vectors).
@ we can calculate a centroid for a collection of data points S = {x1,...xn}.

Initialize: randomly pick k data points as initial cluster centers ¢ = c1, ..., c from S
repeat
Form k clusters by assigning each point in S to its closest centroid.
Recompute the centroid for each cluster.
unt il Centroids do not change
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The k-means algorithm: Example
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The k-means algorithm: Example
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The k-means algorithm: Example
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The k-means algorithm: Example

MI Autumn 2019 The k-means algorithm 9



The k-means algorithm: Example
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The k-means algorithm: Example
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The k-means algorithm: Example
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The k-means algorithm: Example
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The k-means algorithm: Example
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The k-means algorithm: Example
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Different &

Result for clustering the same data with k£ = 2:
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Result can depend on choice of initial cluster centers!
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Clustering Iris

x x xxX x
m K X ><X
w LR L * w_w x X
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Iris true classes

Iris 3-means clustered
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The k-means algorithm: Background

k-means as an optimization problem

Assume that we use the Euclidean distance d as proximity measure and that the quality of the
clustering is measured by the sum of squared errors:

k
SSE=Y """ d(cix)?
i=1xeC;

where:
@ c; is the i'th centroid
@ (C; C Sis the points closets to c; according to d.

In principle ...

We can minimize the SSE by looking at all possible partitionings ~~ not feasible!
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The k-means algorithm: Background

k-means as an optimization problem

Assume that we use the Euclidean distance d as proximity measure and that the quality of the
clustering is measured by the sum of squared errors:

SSE = ZZ (ci,x)?,

i=1xeC;

where:
@ c; is the i'th centroid
@ (C; C Sis the points closets to c; according to d.

In principle ...

We can minimize the SSE by looking at all possible partitionings ~~ not feasible!

Instead, k-means

The centroid that minimizes the SSE is the mean of the data-points in that cluster:

2

7’ xeC;

Local optimum found by alternating between cluster assignments and centroid estimation.
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The k-means algorithm: Background

Convergence

The k-means algorithm is guaranteed to converge
@ Each step reduces the sum of squared errors.
@ There is only a finite number of cluster assignments.

There is no guarantee of reaching the global optimum:
@ Improve by running with multiple random restarts.
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Some practical issues
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The result of partitional clustering can be skewed by outliers. Example with & = 2:

~~ useful preprocessing: outlier detection and elimination.
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Different Measuring Scales

Instances defined by attributes

A1 = height in inches and A = annual income in § :

Height

80% L) @00 oOoOGDOo‘)Q)!&SﬁQ;&) eece® o

Income
‘ 50000

@ all distance functions for continuous attributes dominated by income values
@ ~~ may need to rescale or normalize continuous attributes
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Min-Max Normalization

1
‘ +
Min-Max Normalization o ; |
. +
replace A; with 8 i
E 0.6 |- B
A; — min(Ai) E g
max(A;) — min(A4;) g o4f * b
2 +
(m%n(Ai), max(A;) are 02 L : i
min/max values of A;
: ; ¥ Al
appearing in the data) 0 i ) ) ) ) A2
-20 0 20 40 60 80 100 120

original values
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Z-Score Standardization

Z-score Standardization 3
replace A; with 2r i ]
o 1F B
A; — mean(A;) E
standard deviation(A;) 2 or 1
s :
g .l ? |
3l ,
Al +
A2
-20 0 20 40 60 80 100 120
original values
where L
n
mean(A;) =21 a5
. 1
standard deviation(A;) = /7= 37— (aj,i — mean(4;))?
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Soft clustering
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Soft clustering

The k-means algorithm generates a hard clustering: each example is assigned to a single cluster.

Alternatively: In soft clustering each example is assigned to a cluster with a certain probability.
The naive Bayes model for clustering

Model Data
(o)  —H
t
t
&) @) &)
!

@ (' is the hidden cluster variable.
@ [, Fy, and Fj3 are the feature variables.
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Soft clustering

The k-means algorithm generates a hard clustering: each example is assigned to a single cluster.

Alternatively: In soft clustering each example is assigned to a cluster with a certain probability.

The naive Bayes model for clustering

Model Data Procedure
| R |FRB|C )
7 7 7 7 @ Set the number of clusters, i.e., the states of
t | F ot |7 ¢

@ @ @ t | fF | f |2 @ Learn the probabilities of the model:
D I I A e P(C), P(F1|C), P(F3|C), and
P(F3|C)
. . ' C @ Use the learned probabilities to cluster the
@ (' is the hidden cluster variable. (future) instances.

@ [, Fy, and Fj3 are the feature variables.
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The EM algorithm

When learning the probability distributions of the model, the variable C' is hidden
@ ~» we cannot directly estimate the probabilities using frequency counts
Instead we employ the Expectation-maximization algorithm

The EM-algorithm

The main idea:
@ Use hypothetical completions of the data using the current probability estimates.
@ Infer the maximum likelihood probabilities for the model based on completed data set.
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Po(C) = (0.6,0.4)

Count table A(Fy, F», F5,C
F| B F3 [ PC|F1,F2,F3)

Py(F1|C)
| c=1 C=2
0.6 0.4
Fi=Ff ‘ 0.4 0.6

t
t
t
!

i t
t| f |t
t | f|f
ot

Maximization
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Also Py(F2|C) and Py(F3|C)
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Po(C) = (0.6,0.4)

@ @ @ Count table A(Fy, F», F3,C

F | P | Fs PC|F1,F2,F3)
(0.84,0.16)

Py(F1|C)
| c=1 C=2
0.6 0.4
Fi=Ff ‘ 0.4 0.6

Also Py(F2|C) and Py(F3|C)

Maximization

~+

&+ S~ o o

t

tof
t|f
s

t , [
t|of |t
t | f|f
ot

Expectation
@ Fractional counts are being calculated by probability updating.
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Po(C) = (0.6,0.4)
@ @ @ Count table A(Fy, F», F3,C
F | P | Fs PC|F1,F2,F3)

P()(F1|C)

t t t (0.84,0.16)
C = 1 C = 2 bl
=t i 06 04 t f t (0.69,0.31)
; ; o f| S
F1 = 0.4 0.6
t f t
t f f Also Py(F>|C) and Py(F3|C)
st

Maximization

Expectation
@ Fractional counts are being calculated by probability updating.
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Po(C) = (0.6,0.4)
@ @ @ Count table A(Fy, F», F3,C
F | P | Fs PC|F1,F2,F3)

P()(F1|C)

= = t t t (0.84,0.16)
Ri= | 00_61 00_42 L A (0.69,0.31)
F=f ‘ 0.4 0.6 ; ; { (0.5,0.5)

i t
t| f |t
tf]f
ot

Also Py(F2|C) and Py(F3|C)

Maximization

Expectation
@ Fractional counts are being calculated by probability updating.
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EM for soft clustering: an example
Expectation
@ Probability tables/\
Po(C) = (0.6,0.4)

@ @ @ Count table A(F}, F», F5,C
F | P | Fs PC|F1,F2,F3)

P()(F1|C)

= = to| ot (0.84,0.16)
F1 = | 00_61 00_42 | f ]t (0.69,0.31)
F=f ‘ 0.4 0.6 t fo|r (0.5,0.5)
Lt Flrlt (0.5.0.5)
t f t
t | F | f  AlsoPy(F2|C)and Po(F5|C)
0 r t

Maximization

Expectation
@ Fractional counts are being calculated by probability updating.
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Po(C) = (0.6,0.4)

@ @ @ Count table A(Fy, F», F3,C

Fy | F2 | 75 || PC|F1,F2,F3)

fOéFi? c=2 t t (0.84,0.16)
By = 0.6 0.4 t f t (0.69,0.31)
= f ‘ 0.4 0.6 t|ff (0.5,0.5)
t : ' F I 0 5,0.5)

i t
t| f |t
t | f|f
ot

Maximization

Also Py(F2|C) and Py(F3|C)

Maximization

1 1
P (C) = 1 > A(F1, Fp, F3,C) = 1(0.84—&—0.69+0.5+0.5,0.16+0.31+0.5+0.5)
Fy,F2,F3

= (0.63,0.37)
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EM for soft clustering: an example

Expectation

@ Probability tables/\
P1(C) = (0.63,0.37)

@ @ @ Count table A(Fy, F», F3,C

Fy | F2 | 75 || PC|F1,F2,F3)

Po(F,
|°é;|?) G ? t (0.84,0.16)
t f t (0.69,0.31)
Fi = 0.6 0.4
Fi=f]| 04 0.6 AN A (05,05
P p p f|l7r |t (0.5,0.5)
t f ot
t f f Also Py(F>|C) and Py(F3|C)
1 r]t
Maximization
Maximization
1 1
P(C)== Y A(Fi,F, F3,C) = Z(0.84 +0.69+ 0.5+ 0.5,0.16 + 0.31 4 0.5 + 0.5)
Fy,F2,F3
= (0.63,0.37)
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Py1(C) = (0.63,0.37)

@ @ @ Count table A(Fy, F», F3,C

Fy | F2 | 75 || PC|F1,F2,F3)

fOéFi? c=2 t t (0.84,0.16)
By = 0.6 0.4 t f t (0.69,0.31)
= f ‘ 0.4 0.6 t|ff (0.5,0.5)
t : ' F I 0 5,0.5)

i t
t| f |t
t | f|f
ot

Maximization

Also Py(F2|C) and Py(F3|C)

Maximization

(0.84+0.69+0.5+0 0.16 +0.31 +0.54+0
A(Fy, Fa, F3,C 0+0+0+05 0+0+0+05
PUFI|C) = >k, Al ) _ )

> ry iy AFL, P2, F3, C) (2.53,1.47)

_ (0.8 0.65
—\02 035
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Py1(C) = (0.63,0.37)

@ @ @ Count table A(Fy, F», F3,C

Fy | F2 | 75 || PC|F1,F2,F3)

fléFﬂ(f) G t t (0.84,0.16)
= t f ¢ (0.69,0.31)
= 0.8 0.65
F=f| 02 035 AN A (05,05
r 5 : : FlFlt 0 5,0.5)

i t
t| f |t
t | f|f
ot

Maximization

Also Py(F2|C) and Py(F3|C)

Maximization

0.84+0.69+054+0 0.16+0.31 +0.540
PL(FL|C) = >opy, ry AL, P2, F3,C) _ 04+0+0+40.5 04+0+040.5)

> ry iy AFL, P2, F3, C) (2.53,1.47)

_ (0.8 0.65
—\02 035
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EM for soft clustering: an example

Expectation

@ Probability tables:
i i E P1(C) = (0.63,0.37)

Count table A(Fy, F», F5,0):
Fy | F> | F3 || P(C|F17F2,F3)

Pl(F1|C)

_ _ t t t (0.84,0.16)
o= ©-v t f t (0.69,0.31)
F = 0.8 0.65
Fi—f 0.2 0.35 t f|f (0.5,0.5)
: : f|f t (0.5,0.5)

Also Py(F2|C) and Py(F3|C)

i t
t| f |t
t | f|f
ot

0.33 0.11
PFR|C) = oo - (0.67 0.89>

0.80 066
Pr(Fs|C) = ... = (0.20 0.34)

Maximization
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Py1(C) = (0.63,0.37)

@ @ @ Count table A(Fy, F», F3,C

Fy | F2 | 75 || PC|F1,F2,F3)

fléFﬂ?) G t t (0.84,0.16)

= — — t f t (0.69,0.31)
- ‘ : : t | fF|f (0.5,0.5)
Fi=f| 02 0.35 flr o 5.0.5)

t t
i ; ;c Also P;(F>|C) and Py (F3|C)
s t

Maximization

: 0.33 0.11
PF2|C) = = (0.67 0.89>

: 0.80 066
PFS|C) = oo - (0.20 0.34)
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Py1(C) = (0.63,0.37)

@ @ @ Count table A(Fy, F», F3,C
F | i | F P(C|Fy, Fy, F:
P (F1]C) RN (0|8§0i2)3)
| c=1 C=2 S
0.8 0.65
Fi=f 0.2 0.35

Also Py (F2|C) and Py (F3|C)

Maximization

~+

o o ok
&+ S~ o o

!
!
!

i t
t| f |t
t | f|f
ot

Expectation
@ Fractional counts are being calculated by probability updating.
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Py1(C) = (0.63,0.37)

@ @ @ Count table A(F}, F», F5,C
F | P | Fs PC|F1,F2,F3)

Pl(F1|C)

Tt | ¢ (0.88,0.12)
| c=1 C=2 ’
L= ‘ 08 065 : ; Jtc (08, 0
F= 02 035

i t
t| f |t
t | f|f
ot

Also Py (F2|C) and Py (F3|C)

Maximization

Expectation
@ Fractional counts are being calculated by probability updating.
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Py1(C) = (0.63,0.37)

@ @ @ Count table A(F}, F», F5,C
F | P | Fs PC|F1,F2,F3)

Pl(F1|C)

t |t | ¢ (0.88,0.12)

C=1 C=2 ’
— | t | f |t (0.66,0.34)
Fr = 0.8 0.65 e || g P
Fi=f| 02 0.35 Ly (b))

i t
t| f |t
t | f|f
ot

Also Py (F2|C) and Py (F3|C)

Maximization

Expectation
@ Fractional counts are being calculated by probability updating.
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EM for soft clustering: an example

Expectation

@ Probability tables:
P1(C) = (0.63,0.37)

@ @ @ Count table A(F}, s, Fy, C):
Fi | Fb | F3 || P(C|FL, F, Fs)

Pl(F1|C)

1 _ t |t | ¢ (0.88,0.12)
e [ O=L ©=2 t f t (0.66,0.34)
= 0.8 0.65
B ‘ 0.2 0.35 t | f| f (0.48,0.52)
P ! : : flr]t (0.47,0.53)
t | f |t
t f f Also P;(F>|C) and Py (F3|C)
f f i
Maximization

Expectation
@ Fractional counts are being calculated by probability updating.
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EM for soft clustering: an example

Expectation

@ Probability tables/\
Py1(C) = (0.63,0.37)

@ @ @ Count table A(F}, F», F5,C
Fy | F2 | 75 || PC|F1,F2,F3)

P (F
|1é;|f) =3 ? t (0.88,0.12)
t f t (0.66,0.34)
F = 0.8 0.65
Fi=f| 02 . t | f | f (0.48,0.52)
T T 1 : : fl |t (0.47,0.53)
t f t
t f f Also P;(F>|C) and Py (F3|C)
f f t
Maximization
Maximization
1 1
P(C)== > A(F,Fy,F30)= (088 +0.66+0.48 + 0.47,0.12 + 0.34 4 0.52 + 0.53)
Fy,F,F3
= (0.62,0.38)

MI Autumn 2019 Soft clustering 20



EM for soft clustering: an example

Expectation

@ Probability tables/\
P»(C) = (0.62,0.38)

@ @ @ Count table A(Fy, F», F3,C

Fy | F2 | 75 || PC|F1,F2,F3)

fléFﬂ?) G t t (0.88,0.12)
— — t f t (0.66,0.34)
Fr = 0.8 0.65
Fimf | 02 . t | f | f (0.48,0.52)
r 1= : : Flf |t (0.47,0.53)

i t
t| f |t
t | f|f
ot

Maximization

Also Py (F2|C) and Py (F3|C)

Maximization

1 1
Py(C) = 1 Z A(Fy, Fy, F3,C) = Z(0.88 +0.66 + 0.48 + 0.47,0.12 4 0.34 + 0.52 + 0.53)
Fy,F2,F3

= (0.62,0.38)
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EM for soft clustering: an example

Expectation

@ Probability tables/\
P»(C) = (0.62,0.38)

@ @ @ Count table A(Fy, F», F3,C

Fy | F2 | 75 || PC|F1,F2,F3)

Py (F
|1éi|?) a=2 v t (0.88,0.12)
= t f t (0.66,0.34)
= 0.8 0.65
F=f]| 02 0.35 t|ff (0.48,0.52)
¢ . . A A (0.47,0.53)

i t
t| f |t
t | f|f
ot

Maximization

Also Py (F2|C) and Py (F3|C)

Maximization

0.88 +0.66+0.48 +0 0.12+ 0.34 +0.52+0
>y, py AL, Fo, F3,0) 0+0+40+0.47 0+0+0+0.53)
P2(F1|C): =

> by ry.p AF1, P2, F3,C) (2.49, 1.51)

_ (081 0.65
~\019 035
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EM for soft clustering: an example

Expectation

@ Probability tables/\
P»(C) = (0.62,0.38)

@ @ @ Count table A(Fy, F», F3,C

Py(F1|C) P F2 | 5 || P( C|F1,F2,F3)
|c=1 Cc=2 t t (0.88,0.12)
t f t (0.66,0.34)
Fr=t | 081 065
P=f 0.19 0.35 t f f (0.48,0.52)
t = : : flrt (0.47,0.53)

i t
t| f |t
t | f|f
ot

Maximization

Also Py (F2|C) and Py (F3|C)

Maximization

0.88+40.66 +0.484+0 0.12+40.34+0.5240
Po(F1|C) = > oFy ry AP, P2, I3, C) _ 040404 0.47 040+ 0+ 0.53)

oFy o Fy AL, F2, I3, C) (2.49,1.51)

_ (081 0.65
~\019 035
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EM for soft clustering: an example

Expectation

@ Probability tables/\
P»(C) = (0.62,0.38)

@ @ @ Count table A(Fy, F», F3,C

Py(F1[C) P F2 | 5 || P( C|F1,F2,F3)
|c=1 Cc=2 t t (0.88,0.12)
— t f t (0.66,0.34)
Fi=t | 081 0.65
FL=f| 019 0.35 t f|f (0.48,0.52)
t f f t (0.47,0.53)

i t
t| f |t
t | f|f
ot

Maximization

Also Py (F2|C) and Py (F3|C)

Maximization

..and so we continue until a termination criterion is reached.
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The EM algorithm

Correctness
@ The sequence of probability estimates generated by the EM algorithm converges to a local

maximum (in rare cases: a saddle point) of the marginal likelihood given the data.
@ To avoid sub-optimal local maxima: run EM several times with different starting points.
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The EM algorithm

Correctness

@ The sequence of probability estimates generated by the EM algorithm converges to a local
maximum (in rare cases: a saddle point) of the marginal likelihood given the data.

@ To avoid sub-optimal local maxima: run EM several times with different starting points.

Notes

@ Any permutation of the cluster labels of a local maximum will also be a local maximum.

@ Rather than keeping track of a full count table, it suffices to store counts for the variable
families, fa(X) = {X} U pa(X). Only one pass through the data is necessary.

@ Clustering an existing or new instance x amounts to calculating P(C'|x).
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Cluster evaluation
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Cluster evaluation

A clustering algorithm applied to a dataset will return a clustering - even if there is no meaningful
structure in the data!

Question: Do the clusters actually correspond to meaningful groups of data instances?
Question: Are all the clusters relevant, or are there some real and some meaningless clusters?

MI Autumn 2019 Cluster evaluation
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Supervised vs. Unsupervised Evaluation

Unsupervised

@ Uses only the data as given to the clustering algorithm, and the resulting clustering
@ The realistic scenario
@ Can be guided by considering changes in evaluation score.

Supervised

@ Uses external information, e.g. a true class label as the “gold standard” for actual groups in
the data

@ Not representative for actual clustering applications
@ Can be useful to evaluate clustering algorithms

@ Caveat: no guarantee that the class labels actually describe the most natural or relevant
groups in the data
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