Machine Intelligence

Lecture 10: Clustering

Thomas Dyhre Nielsen

Aalborg University

MI Autumn 2019

Tentative course overview

Topics:

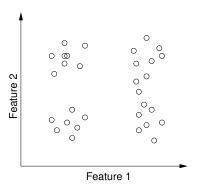
- Introduction
- Search-based methods
- Constrained satisfaction problems
- Logic-based knowledge representation
- Representing domains endowed with uncertainty.
- Bayesian networks
- Inference in Bayesian networks
- Machine learning: Classification
- Machine learning: Clustering
- Planning
- Multi-agent systems

MI Autumn 2019

Clustering

Clustering: Introduction

The objective of clustering is to find structure in the data.



Examples:

- Based on customer data, find groups of customers with similar profiles.
- Based on image data, find groups of images with similar motif.
- Based on article data, find groups of articles with the same topics.
- ...

Measurement of petal width/length and sepal width/length for 150 flowers of 3 different species of Iris.

first reported in:

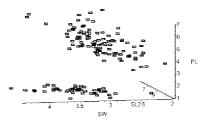
Fisher,R.A. "The use of multiple measurements in taxonomic problems" Annual Eugenics, 7 (1936).

Attributes				Class variable
SL	SW	PL	PW	Species
5.1	3.5	1.4	0.2	Setosa
4.9	3.0	1.4	0.2	Setosa
6.3	2.9	6.0	2.1	Virginica
6.3	2.5	4.9	1.5	Versicolor

Unlabeled Iris

The Iris data with class labels removed:

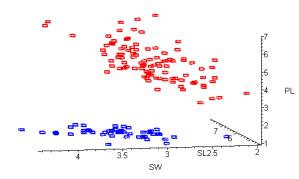
Attributes						
SL	SW	PL	PW			
5.1	3.5	1.4	0.2			
4.9	3.0	1.4	0.2			
6.3	2.9	6.0	2.1			
6.3	2.5	4.9	1.5			



Clustered Iris

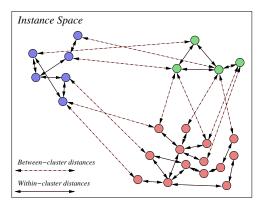
A clustering of the data $S=\mathbf{a}_1,\ldots,\mathbf{a}_N$ consists of a set $C=\{c_1,\ldots,c_k\}$ of cluster labels, and a cluster assignment $\mathbf{ca}:S\to C$.

Clustering Iris with $C = \{blue, red\}$:



The k-means algorithm

Distance Function and Clustering



A candidate clustering (indicated by colors) of data cases in instance space. Arrows indicate between- and within-cluster distances (selected).

General goal: find clustering with

- large between-cluster variation (sum of between-cluster distances)
- small within-cluster variation (sum of within-cluster distances)

The k-means algorithm

We consider the scenario, where

- the number k of clusters is known.
- we have a distance measure $d(\mathbf{x}_i, \mathbf{x}_j)$ between pairs of data points (feature vectors).
- we can calculate a centroid for a collection of data points $S = \{x_1, \dots x_n\}$.

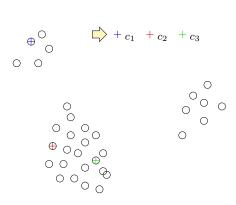
Initialize: randomly pick k data points as initial cluster centers $\mathbf{c}=c_1,\ldots,c_k$ from S repeat

Form k clusters by assigning each point in S to its closest centroid. Recompute the centroid for each cluster.

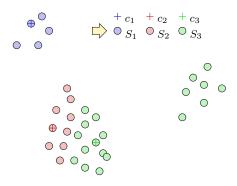
until Centroids do not change

$$k = 3$$
:

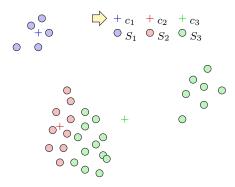
$$k = 3$$
:



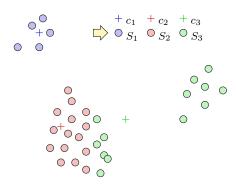
$$k = 3$$
:



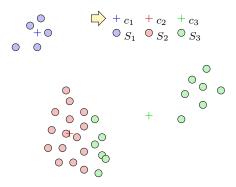
$$k = 3$$
:



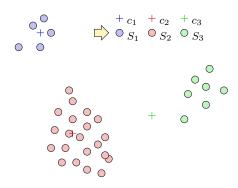
$$k = 3$$
:



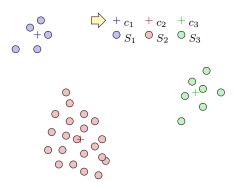
$$k = 3$$
:



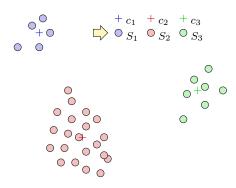
$$k = 3$$
:



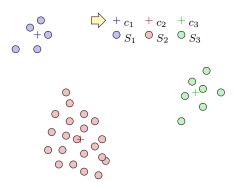
$$k = 3$$
:



$$k = 3$$
:

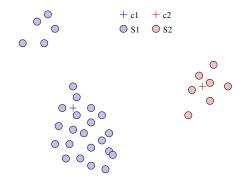


$$k = 3$$
:

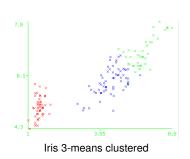


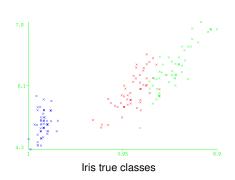
Different *k*

Result for clustering the same data with k=2:



Result can depend on choice of initial cluster centers!





k-means as an optimization problem

Assume that we use the Euclidean distance d as proximity measure and that the quality of the clustering is measured by the sum of squared errors:

$$SSE = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} d(\mathbf{c}_i, \mathbf{x})^2,$$

where:

- c_i is the i'th centroid
- $C_i \subseteq S$ is the points closets to c_i according to d.

In principle ...

We can minimize the SSE by looking at all possible partitionings → not feasible!

The k-means algorithm: Background

k-means as an optimization problem

Assume that we use the Euclidean distance d as proximity measure and that the quality of the clustering is measured by the sum of squared errors:

$$SSE = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} d(\mathbf{c}_i, \mathbf{x})^2,$$

where:

- c_i is the i'th centroid
- $C_i \subseteq S$ is the points closets to c_i according to d.

In principle ...

We can minimize the SSE by looking at all possible partitionings → not feasible!

Instead, k-means

The centroid that minimizes the SSE is the *mean* of the data-points in that cluster:

$$\mathbf{c}_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$$

Local optimum found by alternating between cluster assignments and centroid estimation.

12

The k-means algorithm: Background

Convergence

The k-means algorithm is guaranteed to converge

- Each step reduces the sum of squared errors.
- There is only a finite number of cluster assignments.

There is no guarantee of reaching the global optimum:

Improve by running with multiple random restarts.

Some practical issues

Outliers

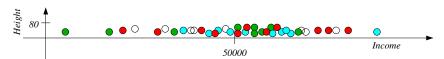
The result of partitional clustering can be skewed by outliers. Example with k=2:

 \leadsto useful preprocessing: outlier detection and elimination.

Different Measuring Scales

Instances defined by attributes

 $A_1 = \textit{height in inches} \ \ \text{and} \ \ A_2 = \textit{annual income in \$} :$



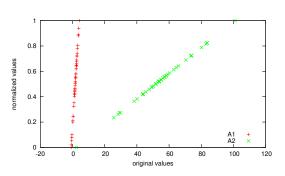
- all distance functions for continuous attributes dominated by income values
- may need to rescale or normalize continuous attributes

Min-Max Normalization

replace A_i with

$$\frac{A_i - \min(A_i)}{\max(A_i) - \min(A_i)}$$

 $(\min(A_i), \max(A_i)$ are \min/\max values of A_i appearing in the data)

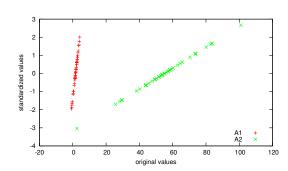


Z-Score Standardization

Z-score Standardization

replace A_i with

$$\frac{A_i - \textit{mean}(A_i)}{\textit{standard deviation}(A_i)}$$



17

where

$$\max(A_i) \qquad \qquad = \frac{1}{n} \sum_{j=1}^n a_{j,i}$$

$$\mathit{standard deviation}(A_i) \qquad = \sqrt{\frac{1}{n-1} \sum_{j=1}^n (a_{j,i} - \mathit{mean}(A_i))^2}$$

Soft clustering

Soft clustering

The k-means algorithm generates a hard clustering: each example is assigned to a single cluster.

Alternatively: In soft clustering each example is assigned to a cluster with a certain probability.

The naive Bayes model for clustering

Model		Data		
\overline{C}	F_1	F_2	F_3	C
	t	t	t	?
	t	f	t	?
(F_1) (F_2) (F_3)	t	f	f	?
	f	f	t	?
	:	:	:	:

- C is the hidden cluster variable.
- F_1 , F_2 , and F_3 are the feature variables.

Soft clustering

The k-means algorithm generates a hard clustering: each example is assigned to a single cluster.

Alternatively: In soft clustering each example is assigned to a cluster with a certain probability.

The naive Bayes model for clustering

- C is the hidden cluster variable.
- F_1 , F_2 , and F_3 are the feature variables.

Procedure

- \bullet Set the number of clusters, i.e., the states of ${\cal C}$
- Learn the probabilities of the model:
 - P(C), $P(F_1|C)$, $P(F_2|C)$, and $P(F_3|C)$
- Use the learned probabilities to cluster the (future) instances.

The EM algorithm

When learning the probability distributions of the model, the variable C is hidden

 $\bullet \ \leadsto \ \text{we } \textit{cannot} \ \text{directly} \ \text{estimate} \ \text{the probabilities} \ \text{using frequency counts}$

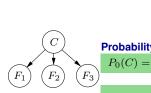
Instead we employ the Expectation-maximization algorithm

The EM-algorithm

The main idea:

- Use hypothetical completions of the data using the current probability estimates.
- Infer the maximum likelihood probabilities for the model based on completed data set.

EM for soft clustering: an example



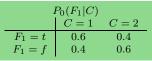
Probability tables:

 $P_0(C) = (0.6, 0.4)$

Count table $A(F_1, F_2, F_3, C)$:

Data:

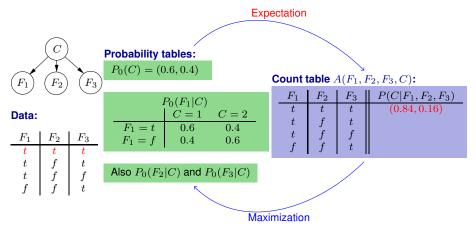
F_1	F_2	F_3
t	t	t
t	f	t
t	f	f
f	f	t



Also $P_0(F_2|C)$ and $P_0(F_3|C)$

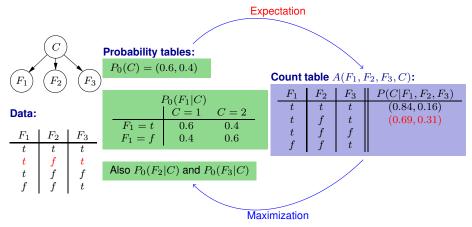
Maximization

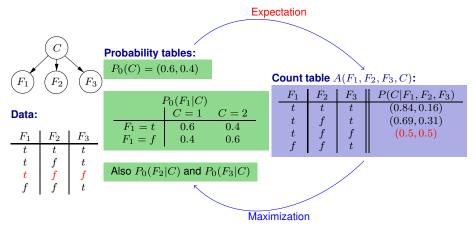
Expectation

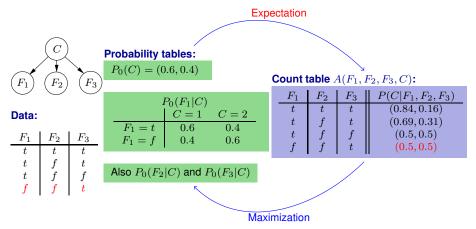


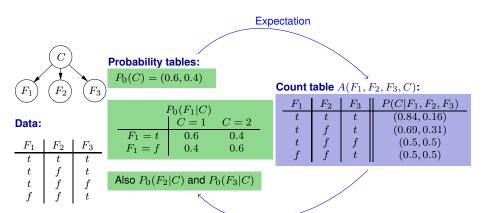
Expectation

Fractional counts are being calculated by probability updating.





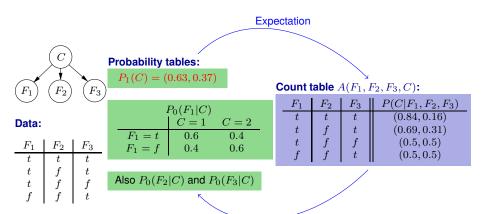




Maximization

$$P_1(C) = \frac{1}{4} \sum_{F_1, F_2, F_3} A(F_1, F_2, F_3, C) = \frac{1}{4} (0.84 + 0.69 + 0.5 + 0.5, 0.16 + 0.31 + 0.5 + 0.5)$$

$$= (0.63, 0.37)$$



Maximization

$$\frac{P_1(C)}{4} = \frac{1}{4} \sum_{F_1, F_2, F_3} A(F_1, F_2, F_3, C) = \frac{1}{4} (0.84 + 0.69 + 0.5 + 0.5, 0.16 + 0.31 + 0.5 + 0.5)$$

$$= (0.63, 0.37)$$

Probability tables:

 $P_1(C) = (0.63, 0.37)$

Count table $A(F_1 \ F_2 \ F_3 \ C)$:

Journe	Found table $I(I_1, I_2, I_3, O)$.					
F_1	F_2	F_3	$P(C F_1, F_2, F_3)$			
t	t	t	(0.84, 0.16)			
t	f	t	(0.69, 0.31)			
t	f	f	(0.5, 0.5)			
f	f	t	(0.5, 0.5)			

Data:

F_1	F_2	F_3
\overline{t}	t	t
t	f	t
t	f	f
f	f	t
-		Į.

i	$P_0(F_1 C)$	C = 2
$F_1 = t$ $F_1 = f$	0.6 0.4	0.4 0.6

Also $P_0(F_2|C)$ and $P_0(F_3|C)$

Maximization

Expectation

Maximization
$$P_1(F_1|C) = \frac{\sum_{F_2, F_3} A(F_1, F_2, F_3, C)}{\sum_{F_1, F_2, F_3} A(F_1, F_2, F_3, C)} = \frac{\begin{pmatrix} 0.84 + 0.69 + 0.5 + 0 & 0.16 + 0.31 + 0.5 + 0 \\ 0 + 0 + 0 + 0.5 & 0 + 0 + 0 + 0.5 \end{pmatrix}}{(2.53, 1.47)}$$

$$= \begin{pmatrix} 0.8 & 0.65 \\ 0.2 & 0.25 \end{pmatrix}$$

Probability tables:

 $P_1(C) = (0.63, 0.37)$

Count t	table	$A(F_1)$	F_2 .	F_3 .	C):
Obuilt	abic	$\alpha(x_1, x_2, \dots, x_n)$	12,	13,	∪) •

	Count		$\mathbf{I}(F_{\perp},I)$	$r_2, r_3, C)$.
$\begin{array}{c cccc} P_1(F_1 C) & & & C = 2 \\ \hline & C = 1 & C = 2 \\ \hline F_1 = t & 0.8 & 0.65 \\ F_1 = f & 0.2 & 0.35 \\ \hline \end{array}$	$ \begin{array}{c c} F_1 \\ t \\ t \\ t \\ f \end{array} $	$\begin{array}{c c} F_2 \\ \hline t \\ f \\ f \\ f \end{array}$	$\begin{bmatrix} F_3 \\ t \\ f \\ t \end{bmatrix}$	$ \begin{array}{c c} P(C F_1, F_2, F_3) \\ \hline (0.84, 0.16) \\ (0.69, 0.31) \\ (0.5, 0.5) \\ (0.5, 0.5) \\ \end{array} $

Expectation

Data:

F_1	F_2	F_3
t	t	t
t	f	t
t	f	f
f	f	t

Also $P_0(F_2|C)$ and $P_0(F_3|C)$

Maximization

Maximization
$$P_{1}(F_{1}|C) = \frac{\sum_{F_{2},F_{3}} A(F_{1},F_{2},F_{3},C)}{\sum_{F_{1},F_{2},F_{3}} A(F_{1},F_{2},F_{3},C)} = \frac{\begin{pmatrix} 0.84 + 0.69 + 0.5 + 0 & 0.16 + 0.31 + 0.5 + 0 \\ 0 + 0 + 0 + 0.5 & 0 + 0 + 0 + 0.5 \end{pmatrix}}{(2.53, 1.47)}$$

$$= \begin{pmatrix} 0.8 & 0.65 \\ 0.2 & 0.25 \end{pmatrix}$$

(F_1) (F_2)	(F_3)	Probability tables: $P_1(C) = (0.63, 0.37)$	Count	table 2	$A(F_1, I$	(F_2,F_3,C) :
Data: $\begin{array}{c c} F_1 & F_2 \\ \hline t & t \end{array}$	$\frac{F_3}{t}$	$\begin{array}{c cccc} & P_1(F_1 C) & & & \\ & C = 1 & C = 2 \\ \hline F_1 = t & 0.8 & 0.65 \\ F_1 = f & 0.2 & 0.35 \end{array}$	$ \begin{array}{c} F_1 \\ t \\ t \\ t \\ f \end{array} $	$\begin{array}{c c} F_2 \\ \hline t \\ f \\ f \\ f \end{array}$	$ \begin{array}{c c} F_3 \\ t \\ t \\ f \\ t \end{array} $	$ \begin{array}{ c c c } \hline P(C F_1, F_2, F_3) \\ \hline (0.84, 0.16) \\ (0.69, 0.31) \\ (0.5, 0.5) \\ \hline (0.5, 0.5) \\ \hline \end{array} $
$egin{array}{c c} t & f \\ t & f \\ f & f \end{array}$	f t	Also $P_0(F_2 C)$ and $P_0(F_3 C)$				

Expectation

Maximization

$$P_1(F_2|C) = \dots = \begin{pmatrix} 0.33 & 0.11 \\ 0.67 & 0.89 \end{pmatrix}$$

$$P_1(F_3|C) = \dots = \begin{pmatrix} 0.80 & 066 \\ 0.20 & 0.34 \end{pmatrix}$$

 F_2

Probability tables:

 $P_1(C) = (0.63, 0.37)$

(Count	table	$A(F_1,$	F_2 ,	F_3 ,	C):

	$P_1(F_1 C)$	
	C=1	C = 2
$F_1 = t$	0.8	0.65
$F_1 = f$	0.2	0.35

u	obtain table $I(I_1, I_2, I_3, O)$.					
	F_1	F_2	F_3	$P(C F_1, F_2, F_3)$		
	t	t	t	(0.84, 0.16)		
	t	f	t	(0.69, 0.31)		
	t	f	f	(0.5, 0.5)		
	f	f	t	(0.5, 0.5)		

Also $P_1(F_2|C)$ and $P_1(F_3|C)$

Maximization

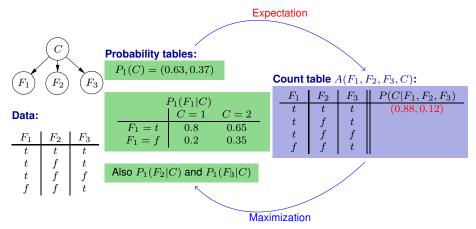
Expectation

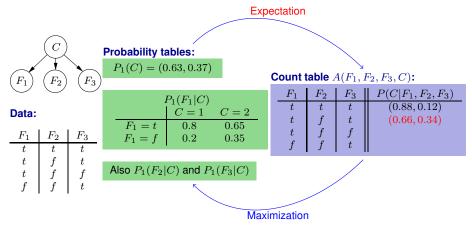
Maximization

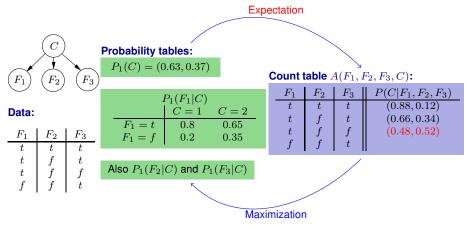
Data:

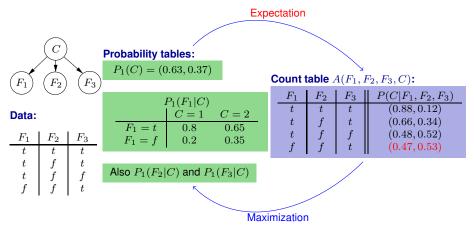
$$P_1(F_2|C) = \dots = \begin{pmatrix} 0.33 & 0.11 \\ 0.67 & 0.89 \end{pmatrix}$$

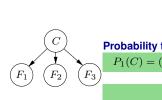
$$P_1(F_3|C) = \dots = \begin{pmatrix} 0.80 & 066 \\ 0.20 & 0.34 \end{pmatrix}$$











Probability tables:

 $P_1(C) = (0.63, 0.37)$

Count t	able /	$A(F_1,I)$	$F_2, F_3, C)$:
F_1	F_2	F_3	$P(C F_1,$

 $P(C|F_1,F_2,F_3)$

(0.88, 0.12)

(0.66, 0.34)(0.48, 0.52)(0.47, 0.53)

Data:

F_1	F_2	F_3
t	t	t
t	f	t
t	f	f
f	f	t

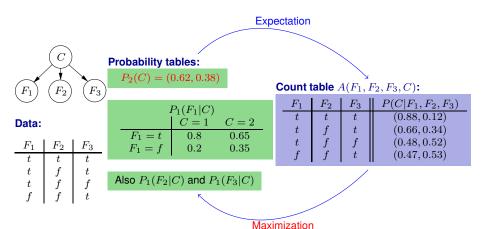
$P_1(F_1 C)$						
	C = 1	C=2				
$F_1 = t$	0.8	0.65				
$F_1 = f$	0.2	0.35				

Also	$P_1(F_2 C)$	and P_1	$(F_3 C)$

Maximization

Expectation

$$P_2(C) = \frac{1}{4} \sum_{F_1, F_2, F_3} A(F_1, F_2, F_3, C) = \frac{1}{4} (0.88 + 0.66 + 0.48 + 0.47, 0.12 + 0.34 + 0.52 + 0.53)$$
$$= (0.62, 0.38)$$



$$\frac{P_2(C)}{4} = \frac{1}{4} \sum_{F_1, F_2, F_3} A(F_1, F_2, F_3, C) = \frac{1}{4} (0.88 + 0.66 + 0.48 + 0.47, 0.12 + 0.34 + 0.52 + 0.53)
= (0.62, 0.38)$$

Probability tables:

 $P_2(C) = (0.62, 0.38)$

Count table $A(F_1, F_2, F_3, C)$:

 $P(C|F_1, F_2, F_3)$ (0.88, 0.12)

> (0.66, 0.34)(0.48, 0.52)(0.47, 0.53)

		$P_1(F_1 C)$		F_1	F_2
	-	C = 1	C = 2	t	t
_	$F_1 = t$	0.8	0.65	t	f
	$F_1 = f$	0.2	0.35	f	J f
				J	J

Also $P_1(F_2|C)$ and $P_1(F_3|C)$

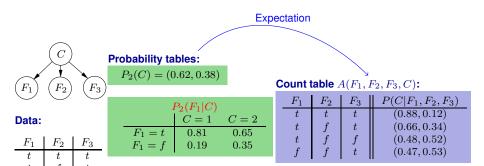
Maximization

Expectation

Maximization

Data:

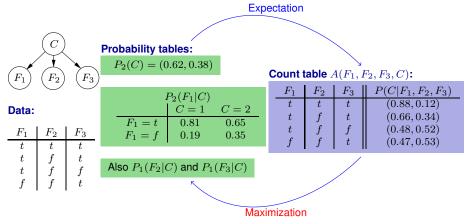
$$\begin{split} & \textit{Maximization} \\ & P_2(F_1|C) = \frac{\sum_{F_2,F_3} A(F_1,F_2,F_3,C)}{\sum_{F_1,F_2,F_3} A(F_1,F_2,F_3,C)} = \frac{\begin{pmatrix} 0.88 + 0.66 + 0.48 + 0 & 0.12 + 0.34 + 0.52 + 0 \\ 0 + 0 + 0 + 0.47 & 0 + 0 + 0 + 0.53 \end{pmatrix}}{(2.49,1.51)} \\ & - \begin{pmatrix} 0.81 & 0.65 \end{pmatrix} \end{split}$$



Also $P_1(F_2|C)$ and $P_1(F_3|C)$

Maximization

$$\begin{split} & \textit{Maximization} \\ & \textit{P}_{2}(\textit{F}_{1}|\textit{C}) = \frac{\sum_{F_{2},F_{3}} A(F_{1},F_{2},F_{3},\textit{C})}{\sum_{F_{1},F_{2},F_{3}} A(F_{1},F_{2},F_{3},\textit{C})} = \frac{\begin{pmatrix} 0.88 + 0.66 + 0.48 + 0 & 0.12 + 0.34 + 0.52 + 0 \\ 0 + 0 + 0 + 0.47 & 0 + 0 + 0 + 0.53 \end{pmatrix}}{(2.49,1.51)} \\ & = \begin{pmatrix} 0.81 & 0.65 \end{pmatrix} \end{split}$$



Maximization

... and so we continue until a termination criterion is reached.

The EM algorithm

Correctness

- The sequence of probability estimates generated by the EM algorithm converges to a local maximum (in rare cases: a saddle point) of the marginal likelihood given the data.
- To avoid sub-optimal local maxima: run EM several times with different starting points.

The EM algorithm

Correctness

- The sequence of probability estimates generated by the EM algorithm converges to a local maximum (in rare cases: a saddle point) of the marginal likelihood given the data.
- To avoid sub-optimal local maxima: run EM several times with different starting points.

Notes

- Any permutation of the cluster labels of a local maximum will also be a local maximum.
- Rather than keeping track of a full count table, it suffices to store counts for the variable families, fa(X) = {X} ∪ pa(X). Only one pass through the data is necessary.
- ullet Clustering an existing or new instance ${f x}$ amounts to calculating $P(C|{f x})$.

Cluster evaluation

Cluster evaluation

A clustering algorithm applied to a dataset will return a clustering - even if there is no meaningful structure in the data!

Question: Do the clusters actually correspond to meaningful groups of data instances? **Question:** Are all the clusters relevant, or are there some real and some meaningless clusters?

Supervised vs. Unsupervised Evaluation

Unsupervised

- Uses only the data as given to the clustering algorithm, and the resulting clustering
- The realistic scenario
- Can be guided by considering changes in evaluation score.

Supervised

- Uses external information, e.g. a true class label as the "gold standard" for actual groups in the data
- Not representative for actual clustering applications
- Can be useful to evaluate clustering algorithms
- Caveat: no guarantee that the class labels actually describe the most natural or relevant groups in the data