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Tentative course overview

Topics:

Introduction

Search-based methods

Constrained satisfaction problems

Logic-based knowledge representation

Representing domains endowed with uncertainty.

Bayesian networks

Inference in Bayesian networks

Machine learning

Planning

Multi-agent systems
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Exact Inference
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Inference Problem

Posterior Marginals

Inference Problem:

Given: a Bayesian network

Given: an assignment of values to some of the variables in the network: Ei = ei (i = 1, . . . , l)

“Instantiation of the nodes E”
“Evidence E = e entered”)
“Findings entered”
. . .

Want: for variables A 6∈ E the posterior marginal P (A | E = e).

MI Autumn 2019 Exact Inference 3



Problem Reduction

According to the definition of conditional probability:

P (A | E = e) =
P (A,E = e)

P (E = e)

It is sufficient to compute for each a ∈ DA the value

P (A = a,E = e).

Together with

P (E = e) =
∑

a∈DA

P (A = a,E = e)

this gives the desired posterior distribution.
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Inference: Basic Principles

Inference as summation

Let A be the variable of interest, E the evidence variables, and Y = Y1, . . . , Yl the remaining
variables in the network not belonging to A ∪E. Then

P (A = a,E = e) =
∑

y1∈DY1

. . .
∑

yl∈DYl

P (A = a,E = e, Y1 = y1, . . . , Yl = yl).

Note:

For each y the probability P (A = a,E = e,Y = y) can be computed from the network (in
time linear in the number of random variables).

There number of configurations over Y is exponential in l.
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Inference Problems I

A B C

D E

F G H

Find P (B|a, f, g, h) =
P (B,a,f,g,h)
P (a,f,g,h)
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Inference Problems I

A B C

D E

F G H

Find P (B|a, f, g, h) =
P (B,a,f,g,h)
P (a,f,g,h)

We can if we have access to P (A,B,C,D,E, F ,G,H):

P (A,B,C,D,E, F ,G,H) = P (A)P (B)P (C)P (D|A,B) · . . . · P (H|E)
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Inference Problems I

A B C

D E

F G H

Find P (B|a, f, g, h) =
P (B,a,f,g,h)
P (a,f,g,h)

We can if we have access to P (A,B,C,D,E, F ,G,H):

P (A,B,C,D,E, F ,G,H) = P (A)P (B)P (C)P (D|A,B) · . . . · P (H|E)

Inserting evidence we get:

P (B, a, f, g, h) =
∑

C,D,E

P (a,B,C,D,E, f, g, h)

and
P (a, f, g, h) =

∑

B

P (B, a, f, g, h)
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Inference Problems II

Sex

Hair length Stature

Conditional probability tables:

Sex

male 0.49
female 0.51

Sex
Hair length male female

long 0.05 0.6
short 0.95 0.4

Sex
Stature male female

≤ 1.68 0.08 0.47
> 1.68 0.92 0.53

Posterior probability inference: Given the value of some observed variables (the evidence)
compute the conditional distribution of some other variable:

P (Stature | Hair length = long) =?
P (Sex | Hair length = short,Stature ≤ 1.68) =?
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Naive Solution Step 1

P (Sex)
Sex

male 0.49
female 0.51

P (Hair length | Sex)
Sex

Hair length male female

long 0.05 0.6
short 0.95 0.4

P (Stature | Sex)
Sex

Stature male female

≤ 1.68 0.08 0.47
> 1.68 0.92 0.53

Query: P (Stature | Hair length = long) =?
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Naive Solution Step 1

P (Sex)
Sex

male 0.49
female 0.51

P (Hair length | Sex)
Sex

Hair length male female

long 0.05 0.6
short 0.95 0.4

P (Stature | Sex)
Sex

Stature male female

≤ 1.68 0.08 0.47
> 1.68 0.92 0.53

Query: P (Stature | Hair length = long) =?

Step 1: Construct joint distribution

P (Sex,Hair length,Stature)
Sex

male female

Hair length Hair length

Stature long short long short

≤ 1.68
> 1.68
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Naive Solution Step 1

P (Sex)
Sex

male 0.49
female 0.51

P (Hair length | Sex)
Sex

Hair length male female

long 0.05 0.6
short 0.95 0.4

P (Stature | Sex)
Sex

Stature male female

≤ 1.68 0.08 0.47
> 1.68 0.92 0.53

Query: P (Stature | Hair length = long) =?

Step 1: Construct joint distribution

P (Sex,Hair length,Stature)
Sex

male female

Hair length Hair length

Stature long short long short

≤ 1.68 0.00196
> 1.68
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Naive Solution Step 1

P (Sex)
Sex

male 0.49
female 0.51

P (Hair length | Sex)
Sex

Hair length male female

long 0.05 0.6
short 0.95 0.4

P (Stature | Sex)
Sex

Stature male female

≤ 1.68 0.08 0.47
> 1.68 0.92 0.53

Query: P (Stature | Hair length = long) =?

Step 1: Construct joint distribution

P (Sex,Hair length,Stature)
Sex

male female

Hair length Hair length

Stature long short long short

≤ 1.68 0.00196 0.03724
> 1.68
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Naive Solution Step 1

P (Sex)
Sex

male 0.49
female 0.51

P (Hair length | Sex)
Sex

Hair length male female

long 0.05 0.6
short 0.95 0.4

P (Stature | Sex)
Sex

Stature male female

≤ 1.68 0.08 0.47
> 1.68 0.92 0.53

Query: P (Stature | Hair length = long) =?

Step 1: Construct joint distribution

P (Sex,Hair length,Stature)
Sex

male female

Hair length Hair length

Stature long short long short

≤ 1.68 0.00196 0.03724 0.14382 0.09588
> 1.68 0.02254 0.42826 0.16218 0.10812
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Naive Solution Step 2

Joint distribution P (Sex,Hair length,Stature)
Sex

male female

Hair length Hair length

Stature long short long short

≤ 1.68 0.00196 0.03724 0.14382 0.09588
> 1.68 0.02254 0.42826 0.16218 0.10812

Step 2 “Enter evidence” :

P (Sex,Hair length,Stature)

Sex
male female

Hair length Hair length

Stature long short long short

≤ 1.68 0.00196 //////////0.03724 0.14382 //////////0.09588
> 1.68 0.02254 //////////0.42826 0.16218 //////////0.10812

Hair length = long

−→ P (Sex,Hair length=long,Stature)
Sex

Stature male female

≤ 1.68 0.00196 0.14382
> 1.68 0.02254 0.16218

Note: the table on the right shows neither a joint nor a conditional distribution!
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Naive Solution Steps 3 + 4

Step 3 Marginalize (sum out Sex variable):

P (Sex,Hair length=long,Stature)
Sex

Stature male female

≤ 1.68 0.00196 0.14382
> 1.68 0.02254 0.16218

∑

Sex−→ P (Hair length=long,Stature)

Stature

≤ 1.68 0.14578
> 1.68 0.18472
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Naive Solution Steps 3 + 4

Step 3 Marginalize (sum out Sex variable):

P (Sex,Hair length=long,Stature)
Sex

Stature male female

≤ 1.68 0.00196 0.14382
> 1.68 0.02254 0.16218

∑

Sex−→ P (Hair length=long,Stature)

Stature

≤ 1.68 0.14578
> 1.68 0.18472

Step 4 Normalize

P (Hair length=long,Stature)

Stature

≤ 1.68 0.14578
> 1.68 0.18472

1
0.14578+0.18472

−→ P (Stature | Hair length=long)

Stature

≤ 1.68 0.441
> 1.68 0.559
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Naive Solution: Summary

Construct Joint: P (Sex,Hair length,Stature) =
P (Sex)P (Hair length | Sex)P (Stature | Sex)
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Naive Solution: Summary

Construct Joint: P (Sex,Hair length,Stature) =
P (Sex)P (Hair length | Sex)P (Stature | Sex)

Insert Evidence: P (Sex,Hair length=long,Stature)
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Naive Solution: Summary

Construct Joint: P (Sex,Hair length,Stature) =
P (Sex)P (Hair length | Sex)P (Stature | Sex)

Insert Evidence: P (Sex,Hair length=long,Stature)

Marginalize: P (Hair length=long,Stature)=

∑

s∈{male,female}

P (Sex=s,Hair length=long,Stature)
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Naive Solution: Summary

Construct Joint: P (Sex,Hair length,Stature) =
P (Sex)P (Hair length | Sex)P (Stature | Sex)

Insert Evidence: P (Sex,Hair length=long,Stature)

Marginalize: P (Hair length=long,Stature)=

∑

s∈{male,female}

P (Sex=s,Hair length=long,Stature)

Condition: P (Stature | Hair length=long) =

P (Hair length=long,Stature)
P (Hair length=long,Stature ≤ 1.68) + P (Hair length=long,Stature > 1.68)
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Naive Solution: Summary

Construct Joint: P (Sex,Hair length,Stature) =
P (Sex)P (Hair length | Sex)P (Stature | Sex)

Insert Evidence: P (Sex,Hair length=long,Stature)

Marginalize: P (Hair length=long,Stature)=

∑

s∈{male,female}

P (Sex=s,Hair length=long,Stature)

Condition: P (Stature | Hair length=long) =

P (Hair length=long,Stature)
P (Hair length=long,Stature ≤ 1.68) + P (Hair length=long,Stature > 1.68)

Complexity

Complexity dominated by initial table P (Sex,Hair length,Stature) (size 23).

For model with n binary variables:
O(2n)
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Variable Elimination

Problem

The joint probability distribution will contain exponentially many entries.

Idea

We can use

the form of the joint distribution P

the law of distributivity

to make the computation of the sum more efficient.

Variable Elimination

Thus, we can adapt our elimination procedure so that:

we marginalize out variables sequentially

when marginalizing out a particular variable X, we only need to consider the factors involving
X.
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Example

B

A C

D
B

t f

.5 .5

A
B t f

t .7 .3
f .1 .9

C
B t f

t .7 .3
f .2 .8

D
A C t f

t t .9 .1
t f .7 .3
f t .8 .2
f f .4 .6

P (A,D = f) =
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Example

B

A C

D
B

t f

.5 .5

A
B t f

t .7 .3
f .1 .9

C
B t f

t .7 .3
f .2 .8

D
A C t f

t t .9 .1
t f .7 .3
f t .8 .2
f f .4 .6

P (A,D = f) =
∑

b∈{t,f}

∑

c∈{t,f}

P (B = b, A,C = c,D = f) =
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Example

B

A C

D
B

t f

.5 .5

A
B t f

t .7 .3
f .1 .9

C
B t f

t .7 .3
f .2 .8

D
A C t f

t t .9 .1
t f .7 .3
f t .8 .2
f f .4 .6

P (A,D = f) =
∑

b∈{t,f}

∑

c∈{t,f}

P (B = b, A,C = c,D = f) =

∑

b∈{t,f}

∑

c∈{t,f}

P (B = b)P (A | B = b)P (C = c | B = b)P (D = f | A,C = c) =
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Example

B

A C

D
B

t f

.5 .5

A
B t f

t .7 .3
f .1 .9

C
B t f

t .7 .3
f .2 .8

D
A C t f

t t .9 .1
t f .7 .3
f t .8 .2
f f .4 .6

P (A,D = f) =
∑

b∈{t,f}

∑

c∈{t,f}

P (B = b, A,C = c,D = f) =

∑

b∈{t,f}

∑

c∈{t,f}

P (B = b)P (A | B = b)P (C = c | B = b)P (D = f | A,C = c) =

∑

b∈{t,f}

P (B = b)P (A | B = b)
∑

c∈{t,f}

P (C = c | B = b)P (D = f | A,C = c)
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Example continued

B

A C

D
B

t f

.5 .5

A
B t f

t .7 .3
f .1 .9

C
B t f

t .7 .3
f .2 .8

D
A C t f

t t .9 .1
t f .7 .3
f t .8 .2
f f .4 .6

∑

b

P (B = b)P (A | B = b)
∑

c

P (C = c | B = b)P (D = f | A,C = c) =

∑

b

P (B = b)P (A | B = b)F1(B = b,A) = F2(A)

MI Autumn 2019 Exact Inference 14



Example continued

B

A C

D
B

t f

.5 .5

A
B t f

t .7 .3
f .1 .9

C
B t f

t .7 .3
f .2 .8

D
A C t f

t t .9 .1
t f .7 .3
f t .8 .2
f f .4 .6

∑

b

P (B = b)P (A | B = b)
∑

c

P (C = c | B = b)P (D = f | A,C = c) =

∑

b

P (B = b)P (A | B = b)F1(B = b,A) = F2(A)

where

C
B t f

t .7 .3

f .2 .8

D
A C t f

t t .9 .1

t f .7 .3

f t .8 .2
f f .4 .6

7→

b a F1(B, A)

t t .7· .1 + .3· .3 = .16

t f .7·.2 + .3·.6 = .32
f t .2·.1 + .8·.3 = .26
f f .2·.2 + .8·.6 = .52

and
B

t f

.5 .5

A
B t f

t .7 .3
f .1 .9

b a F1(B, A)
t t .16

.

.

.
.
.
.

.

.

.

7→
a F2(A)
t . . .
f . . .

MI Autumn 2019 Exact Inference 14



Factors

Calculus of factors

The procedure operates on factors: functions of subsets of variables

Required operations on factors:

multiplication
marginalization (summing out selected variables)
restriction (setting selected variables to specific values)

Complexity

Call subsets U of V that are the arguments of factors P (. . . | . . .) resp. Fj(. . .) which appear in
the elimination process factor sets.

The complexity of variable elimination is exponential in the size of the largest factor set.

The size of the largest factor set can depend strongly on the order in which variables are summed
out!
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Alarm Example

Example

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Bad ordering for computing P (MC,B = t):

∑

eq∈{t,f}

∑

jc∈{t,f}

∑

a∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =
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Alarm Example

Example

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Bad ordering for computing P (MC,B = t):

∑

eq∈{t,f}

∑

jc∈{t,f}

∑

a∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =
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Alarm Example

Example

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Bad ordering for computing P (MC,B = t):

∑

eq∈{t,f}

∑

jc∈{t,f}

∑

a∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)F1(eq, jc,MC) =
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Alarm Example

Example

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Bad ordering for computing P (MC,B = t):

∑

eq∈{t,f}

∑

jc∈{t,f}

∑

a∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)F1(eq, jc,MC) =
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Alarm Example

Example

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Bad ordering for computing P (MC,B = t):

∑

eq∈{t,f}

∑

jc∈{t,f}

∑

a∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)F1(eq, jc,MC) =

∑

eq∈{t,f}

P (B = t)P (EQ = eq)F2(eq,MC) =
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Alarm Example

Example

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Bad ordering for computing P (MC,B = t):

∑

eq∈{t,f}

∑

jc∈{t,f}

∑

a∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)F1(eq, jc,MC) =

∑

eq∈{t,f}

P (B = t)P (EQ = eq)F2(eq,MC) =
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Alarm Example

Example

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Bad ordering for computing P (MC,B = t):

∑

eq∈{t,f}

∑

jc∈{t,f}

∑

a∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)F1(eq, jc,MC) =

∑

eq∈{t,f}

P (B = t)P (EQ = eq)F2(eq,MC) =

P (B = t)F3(MC)
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Alarm Example

Example

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Bad ordering for computing P (MC,B = t):

∑

eq∈{t,f}

∑

jc∈{t,f}

∑

a∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)F1(eq, jc,MC) =

∑

eq∈{t,f}

P (B = t)P (EQ = eq)F2(eq,MC) =

P (B = t)F3(MC)

Largest factor (F1) is function of 3 variables!
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Alarm Example continued

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Good ordering for computing P (MC,B = t):

∑

a∈{t,f}

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =
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Alarm Example continued

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Good ordering for computing P (MC,B = t):

∑

a∈{t,f}

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =

∑

a∈{t,f}

∑

eq∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (MC | A = a)F1(a) =

MI Autumn 2019 Exact Inference 17



Alarm Example continued

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Good ordering for computing P (MC,B = t):

∑

a∈{t,f}

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =

∑

a∈{t,f}

∑

eq∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (MC | A = a)F1(a) =

∑

a∈{t,f}

P (B = t)P (MC | A = a)F1(a)F2(a) =
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Alarm Example continued

Earthquake

MaryCallsJohnCalls

Alarm

Burglary

Good ordering for computing P (MC,B = t):

∑

a∈{t,f}

∑

eq∈{t,f}

∑

jc∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (JC = jc | A = a)P (MC | A = a) =

∑

a∈{t,f}

∑

eq∈{t,f}

P (B = t)P (EQ = eq)P (A = a | B = t,EQ = eq)P (MC | A = a)F1(a) =

∑

a∈{t,f}

P (B = t)P (MC | A = a)F1(a)F2(a) =

P (B = t)F3(MC)

Largest factor (P (A | B = t,EQ)) is function of 2 variables!
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Singly connected networks

A singly connected network is a network in which any two nodes are connected by at most one
path of undirected edges:
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Singly connected networks

A singly connected network is a network in which any two nodes are connected by at most one
path of undirected edges:

2

5

3

7

8

9

10

6

4

1

For singly connected network: any elimination order that “peels” variables from outside will only
create factors of only one variable.

The complexity of inference is therefore linear in the total size of the network (= combined size of
all conditional probability tables).
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Naive Bayes Model

Example: Spam filter

A single query variable: Spam

Many observable features (e.g. words appearing in the body of the message):
abacus,. . . ,informatics, pills, . . . , watch,. . . , zytogenic

Network Structure:

Spam

abacus . . . informatics . . . pills . . . watch . . . zytogenic

Inference with large number of variables possible

Essentially how Thunderbird spam filter works
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Naïve Bayes models

Hyp

Inf1 Infn

P (Hyp)

P (Inf1|Hyp) P (Infn|Hyp)

We want the posterior probability of the hypothesis variable Hyp given the observations
{Inf1 = e1, . . . , Infn = en}:

P (Hyp|Inf1 = e1, . . . , Infn = en) =
P (Inf1 = e1, . . . , Infn = en|Hyp)P (Hyp)

P (Inf1 = e1, . . . , Infn = en)

Note: The model assumes that the information variables are independent given the hypothesis
variable.

MI Autumn 2019 Exact Inference 20



Naïve Bayes models

Hyp

Inf1 Infn

P (Hyp)

P (Inf1|Hyp) P (Infn|Hyp)

We want the posterior probability of the hypothesis variable Hyp given the observations
{Inf1 = e1, . . . , Infn = en}:

P (Hyp|Inf1 = e1, . . . , Infn = en) =
P (Inf1 = e1, . . . , Infn = en|Hyp)P (Hyp)

P (Inf1 = e1, . . . , Infn = en)

= µ · P (Inf1 = e1|Hyp) · . . . · P (Infn = en|Hyp)P (Hyp)

Note: The model assumes that the information variables are independent given the hypothesis
variable.
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Approximate Inference
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Sampling Inference

Sample Generator

Observation: can use Bayesian network as random generator that produces states X = x

according to distribution P defined by the network.

Example:

A

B

A
t f

.2 .8

B
A t f

t .7 .3
f .4 .6

- Generate random numbers r1, r2 uniformly
from [0,1].

- Set A = t if r1 ≤ .2 and A = f else.

- Depending on the value of A and r2 set B
to t or f .

Random generation of one state: linear in size of network.
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Sampling Inference

Approximate Inference from Samples

To compute an approximation of P (E = e) (E a subset of the variables in the Bayesian network):

generate a (large) number of random states

count the frequency of states in which E = e.

Samples
with E = e

Samples
with E 6= e
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Accuracy

Hoeffding Bound

p: true probability P (E = e)

s: estimate for p from sample of size n

ǫ: an error bound > 0.

Then
P (|s− p| > ǫ) ≤ 2e−2nǫ2
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Accuracy

Hoeffding Bound

p: true probability P (E = e)

s: estimate for p from sample of size n

ǫ: an error bound > 0.

Then
P (|s− p| > ǫ) ≤ 2e−2nǫ2

Required Sample Size

To obtain an estimate that with probability at most δ has an accuracy at least ǫ, it is sufficient to
take

n = −ln(δ/2)/(2ǫ2) samples.

MI Autumn 2019 Approximate Inference 23



Accuracy

Hoeffding Bound

p: true probability P (E = e)

s: estimate for p from sample of size n

ǫ: an error bound > 0.

Then
P (|s− p| > ǫ) ≤ 2e−2nǫ2

Required Sample Size

To obtain an estimate that with probability at most δ has an accuracy at least ǫ, it is sufficient to
take

n = −ln(δ/2)/(2ǫ2) samples.

Example

To get an error ǫ of less than 0.1 in 95% of the cases (δ = 0.05), we need:

n > −ln(0.05/2)/(2 · 0.12) ≈ 184 samples
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Accuracy

Hoeffding Bound

p: true probability P (E = e)

s: estimate for p from sample of size n

ǫ: an error bound > 0.

Then
P (|s− p| > ǫ) ≤ 2e−2nǫ2

Required Sample Size

To obtain an estimate that with probability at most δ has an accuracy at least ǫ, it is sufficient to
take

n = −ln(δ/2)/(2ǫ2) samples.

Example

To get an error ǫ of less than 0.1 in 95% of the cases (δ = 0.05), we need:

n > −ln(0.05/2)/(2 · 0.12) ≈ 184 samples

How many samples do we need if the error should be less than 0.01?

MI Autumn 2019 Approximate Inference 23



Accuracy

Hoeffding Bound

p: true probability P (E = e)

s: estimate for p from sample of size n

ǫ: an error bound > 0.

Then
P (|s− p| > ǫ) ≤ 2e−2nǫ2

Required Sample Size

To obtain an estimate that with probability at most δ has an accuracy at least ǫ, it is sufficient to
take

n = −ln(δ/2)/(2ǫ2) samples.

Example

To get an error ǫ of less than 0.1 in 95% of the cases (δ = 0.05), we need:

n > −ln(0.05/2)/(2 · 0.12) ≈ 184 samples

How many samples do we need if the error should be less than 0.01? 18444 samples
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Rejection Sampling

The simplest approach: Rejection Sampling

#

#

Sample with

not E = e

E = e, A 6= a

E = e, A = a

∪
Approximation for P (A = a | E = e):
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Sampling from the conditional distribution

Problem with rejection sampling: samples with E 6= e are useless!

Ideally: would draw samples directly from the conditional distribution P (A | E = e).
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Likelihood weighting I

First idea (not to be followed)

Fix evidence variables to their observed states.

Sample from non-evidence variables.
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Likelihood weighting I

First idea (not to be followed)

Fix evidence variables to their observed states.

Sample from non-evidence variables.

Problem: This gives a sampling distribution

∏

X∈X\E

P (X | pa(X) \E,pa(X) ∩E)

somewhere between P (X) and P (X | e).
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Likelihood weighting I

First idea (not to be followed)

Fix evidence variables to their observed states.

Sample from non-evidence variables.

Problem: This gives a sampling distribution

∏

X∈X\E

P (X | pa(X) \E,pa(X) ∩E)

somewhere between P (X) and P (X | e).

Likelihood weighting

We would like to sample from

P (X, e) =
∏

X∈X\E

P (X | pa(X) \E, pa(X) ∩E)

︸ ︷︷ ︸

Part 1

·
∏

E∈E

P (E = e | pa(E) \E, pa(E) ∩E)

︸ ︷︷ ︸

Part 2

So instead weigh each generated sample with a weight corresponding to Part 2.
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Likelihood weighting II

Likelihood weighting

Estimate P (X = e | e) as

P̂ (X = e | e) =

∑

sample:X=x
w(sample)

∑

sample w(sample)
,

where
w(sample) =

∏

E∈E

P (E = e | pa(E) = π) (Part 2 on the previous slide)

and π is the values of pa(E) under sample and e.
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Likelihood weighting II

Likelihood weighting

Estimate P (X = e | e) as

P̂ (X = e | e) =

∑

sample:X=x
w(sample)

∑

sample w(sample)
,

where
w(sample) =

∏

E∈E

P (E = e | pa(E) = π) (Part 2 on the previous slide)

and π is the values of pa(E) under sample and e.

Importance sampling

Likelihood weighting is an instance of importance sampling, where

samples are weighted and can come from (almost) any proposal distribution.
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