Advanced Algorithms

Lecture 11 Approximation Algorithms for NP-Complete Problems

> Tung Kieu tungkvt@cs.aau.dk

ILO of Lecture 11

- Approximation algorithms
 - to understand the concepts of approximation ratio and approximation algorithm;
 - to understand the examples of approximation algorithms for the problems of vertex-cover and traveling-salesman.

• P, NP, and NP-complete

- Approximation ratio, approximation algorithm, and approximation scheme
- Approximation algorithm for vertex-cover
- Approximation algorithm for traveling-salesman

P, NP, NP-complete

• *P*

- Problems that are solvable in polynomial time, $n^{O(1)}$.
- *NP*
 - Problems that are verifiable in polynomial time, $n^{O(1)}$.
- *NP*-complete
 - A problem is in *NP*, and is as hard as any problem in *NP*.
 - No polynomial-time algorithm has yet been discovered.
 - Nobody has yet been able to determine conclusively whether *NP*-complete problems are in fact solvable in polynomial time
- P = NP or that $P \neq NP$.
 - ?

Example

- Subset sum problem
 - Given a set of *n* integers, is there a non-empty subset whose sum is *x*, e.g., 0?
 - Consider set {-3, -2, 1, 5, 8}
- NP?
 - Yes, given any subset, you can verify if its sum is x in linear time O(n).
 - Is sum of {1, 5, 8} = 10?
- P?
 - No, in the worst case, in order to identify a non-empty subset whose sum is x, we need to enumerate all 2ⁿ possible subsets, thus having exponential runtime

Summary

Problems	Verifiable in Polynomial time	Solvable in polynomial time
Р	Yes	Yes
NP	Yes	Yes or Unknown
NP-Complete	Yes	Unknown

Handling NP-complete problems

- Many interesting and important problems are NP-complete.
 - Knapsack problem
 - Travelling salesman problem
- NO! We have some ways to deal with an NP-complete problem.
 - If the actual inputs are small, an algorithm with exponential running time may be acceptable.
 - Come up approaches to find *near-optimal--* approximation algorithm solutions in polynomial time.
 - Use *heuristics* to speed up exponential running time.

Agenda

- P, NP, and NP-complete
- Approximation ratio, approximation algorithm, and approximation scheme
- Approximation algorithm for vertex-cover
- Approximation algorithm for traveling-salesman

- Suppose that
 - we are working on an *optimization* problem with input size *n*;
 - each solution has a *cost* value, and we want to identify the optimal solution, i.e., the one with the minimum or maximum possible cost;
 - optimal solution is C*, returned by an exact algorithm that runs in exponential time;
 - approximate solution is C, returned by an approximation algorithm that runs in polynomial time.
- Maximization problem:
 - $0 < C \le C^*$, C^*/C gives a factor.
 - E.g., *C**=100, *C*=90, *C**/*C* = 10/9
- Minimization problem:
 - $0 < C^* \le C$, C/C^* gives a factor.
 - E.g., C*=100, C=110, C/C* = 11/10

- A $\rho(n)$ -approximation algorithm has an approximation ratio $\rho(n)$, if, for any input size of n, it satisfies $\max(\frac{c}{c*}, \frac{c*}{c}) \leq \rho(n)$.
 - C is control by ratio ρ(n).
 - It provides a guarantee on the performance of an approximation algorithm.
 - Consider a 1.2-approximation algorithm with optimal cost C*=100.
 - For a minimization problem, the algorithm returns a value that is no larger than 100*1.2=120.
 - For a maximization problem, the algorithm returns a value that is no smaller than 100/1.2=83.3.
- Approximation ratio is never smaller than 1.
- 1-approximation algorithm produces the optimal solution.

Approximation scheme

- An approximation scheme for an optimization problem is an approximation algorithm that takes as input
 - The problem and a value $\varepsilon > 0$.
 - Then, the scheme is a $(1+\varepsilon)$ -approximation algorithm.
- Polynomial-time approximation scheme, PTAS
 - Scheme runs in polynomial time of input size *n* for any fixed $\varepsilon > 0$, e.g., $O(n^{2/\varepsilon})$
- Fully polynomial-time approximation scheme, FPTAS
 - Scheme runs in polynomial time of both input size n and $1/\epsilon$, e.g., O(($1/\epsilon$)²n³)

Exam 2018

5. Take a careful look at the following statements and decide if they are correct.

5.1 (2 points) Consider an approximation algorithm with approximation ratio 1.1 for solving a NP-complete problem P. Assume that P is a **maximization** problem and its optimal solution is 100. Then, the approximation algorithm may return a value 105.

1) Correct

2) Wrong

5.2 (2 points) Consider an approximation algorithm with approximation ratio 2 for solving a NP-complete problem P. Assume that P is a **minimization** problem and its optimal solution is 100. Then, the approximation algorithm may return a value 201.

1) Correct

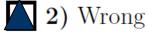
2) Wrong

Exam 2018

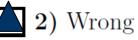
5. Take a careful look at the following statements and decide if they are correct.

5.1 (2 points) Consider an approximation algorithm with approximation ratio 1.1 for solving a NP-complete problem P. Assume that P is a **maximization** problem and its optimal solution is 100. Then, the approximation algorithm may return a value 105.

1) Correct



5.2 (2 points) Consider an approximation algorithm with approximation ratio 2 for solving a NP-complete problem P. Assume that P is a **minimization** problem and its optimal solution is 100. Then, the approximation algorithm may return a value 201.



Agenda

- P, NP, and NP-complete
- Approximation ratio, approximation algorithm, and approximation scheme
- Approximation algorithm for vertex-cover
- Approximation algorithm for traveling-salesman

The vertex-cover problem

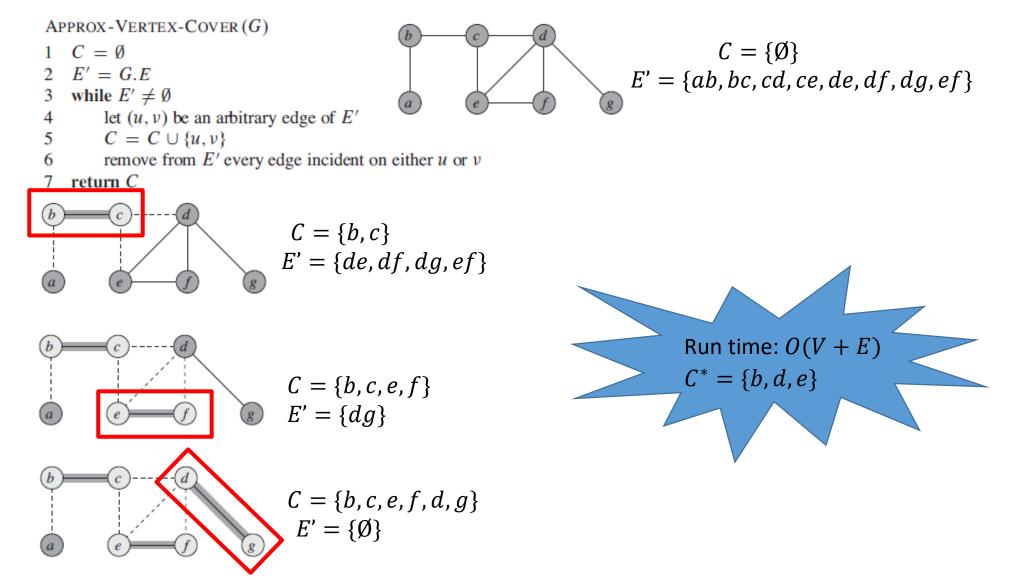
- Given an undirected graph G = (V, E)
- A vertex cover of G is a *subset of vertices* $V' \subseteq V$, s.t.
 - For each $(u, v) \in E$, we have $u \in V'$ or $v \in V'$ or both.
 - $V_1' = \{u, v, w, x, y, z\}$
 - $V_2' = \{w, z\}$

•
$$V_3' = \{u, v, y, x\}$$

- The size of a vertex cover is the number of vertices in it.
 - Sizes of V_1 ', V_2 ', and V_3 ' are 6, 2, and 4, respectively.
- Vertex-cover problem: find a vertex cover of minimum size.

u

Approximation algorithm



• Approximation ratio

•
$$C^* = \{b, d, e\}, C = \{b, c, e, f, d, g\}$$

• $\frac{C}{C^*} = \frac{6}{3} = 2$

APPROX-VERTEX-COVER (G)

- 1 $C = \emptyset$ 2 E' = G.E3 while $E' \neq \emptyset$ 4 [et (u, v) be an arbitrary edge of E']5 $C = C \cup \{u, v\}$ 6 remove from E' every edge incident on either u or v7 return C
- What if we are lucky (i.e., having a lucky order in line 4), can we get a better solution or even exact solution?
 - Visit (d, e) first. Then $(b, c) \rightarrow C = \{d, e, b, c\}$
 - $\frac{C}{C^*} = \frac{4}{3}$ better than 2.
- What is the approximation ratio then?
 - Observing from the two examples, it should be at least 2.
 - Then, we need to prove the ratio.

- Let A denote the set of edges that line 4 picked. $A \subseteq E$
- To cover the edges in *A*, any vertex cover must include at least one endpoint of each edge in *A*.
 - This is due to the definition of a vertex cover: a vertex cover contains at least one vertex of each edge.
 - The optimal vertex cover C^{*} should also include at least one endpoint of each edge in A.
- No two edges in A share an endpoint
 - Once an edge is picked in line 4 and is added into A, all the edges that share the edge's endpoints are deleted from E' in line 6.
- Thus, we have the lower bound $|C^*| \ge |A|$.

- When line 4 picks an edge, both endpoints of the edge are added into *C*.
 - We have |C| = 2|A|
- Considering the lower bound $|C^*| \ge |A|$, we have
 - $|C| = 2|A| \le 2|C^*|$
 - Approximation ratio: $\frac{|C|}{|C^*|} \leq 2$
- Conclusion: we have a 2-approximation algorithm.

Reflection on approximation ratio proof

- How can we possibly prove the approximation ratio without even knowing the size of an optimal solution?
 - Instead of knowing the exact size of an optimal solution, we rely on a lower bound on the size of an optimal solution.
 - Vertex-cover problem: $|C^*| \ge |A|$
 - Next, we consider the relationship between the result returned by an approximation and the lower bound.
 - |C| = 2|A|
- This is a common *methodology* used in approximation ratio proof.

Agenda

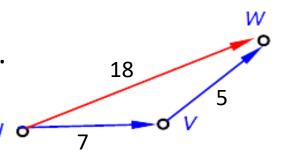
- P, NP, and NP-complete
- Approximation ratio, approximation algorithm, and approximation scheme
- Approximation algorithm for vertex-cover
- Approximation algorithm for traveling-salesman

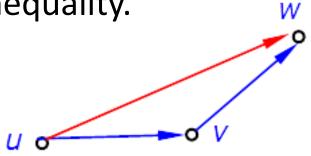
Traveling-salesman problem (TSP)

- Given
 - A list of cities and the distance between each pair of cities.
- Compute
 - the shortest *path that visits each city exactly once and returns to the origin city* or shortest *simple cycle with all vertices*?
- Given a **complete** undirected graph G = (V, E)
 - Every pair of vertices is connected by an edge.
 - Each vertex has V 1 edges to all remaining vertices.
- For each edge $(u, v) \in E$, it has a nonnegative integer cost c(u, v), e.g., the Euclidean distance.
- Identify a Hamiltonian cycle of G with minimum cost.
 - A Hamiltonian cycle is a simple cycle that contains each vertex in V.
 - A simple cycle is a path $(v_0, v_1, v_2, ..., v_k)$ where $v_0 = v_k$ and $v_1, v_2, ..., v_k$ are distinct.

Simplified TSP

- The cost function c satisfies triangle inequality.
- For all $u, v, w \in V$:
 - $c(u,w) \leq c(u,v) + c(v,w)$
- These are natural simplifications
 - Vertices points in the plane.
 - Cost of an edge Euclidean distance between the two vertices of the edge.
- General TSP
 - Without the triangle inequality assumption.





Another simpler TSP

- A spanning tree T for a connected graph G is a tree that includes all the vertices of G. Then we want to find a spanning tree of minimum cost---minimum spanning trees problem.
- Is Hamiltonian cycle a tree?
 - No, because it is a cycle.
- Can we change a Hamiltonian cycle to a tree?
 - Yes, by deleting an edge to break the cycle.

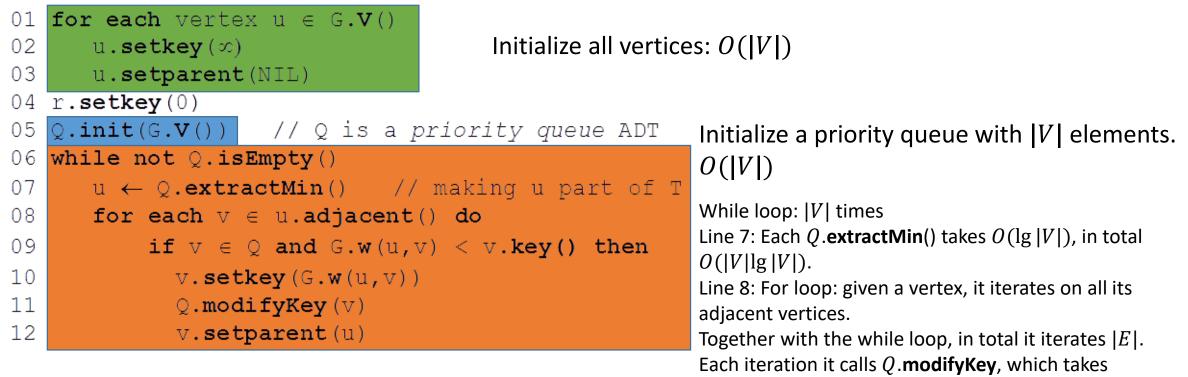
Approximation algorithm

APPROX-TSP-TOUR(G, c)

- 1 select a vertex $r \in G.V$ to be a "root" vertex
- 2 compute a minimum spanning tree T for G from root r using MST-PRIM(G, c, r)
- 3 let H be a list of vertices, ordered according to when they are first visited in a preorder tree walk of T
- 4 return the hamiltonian cycle H
- Choose a vertex, say vertex *r*, as root.
- Compute a MST from the chosen root *r*.
- Preorder tree work on the MST.
 - Visits each vertex before visiting its children.

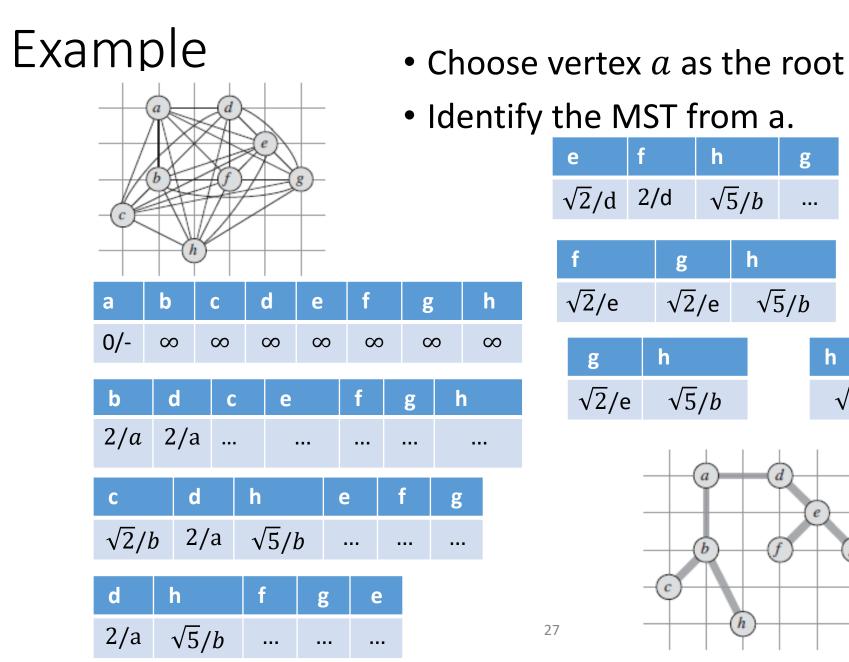
MST-Prim's algorithm

MST-Prim(G,r)



 $O(\lg |V|).$

In total, O(|E||g|V| + |V||g|V|) = O(|E||g|V|).

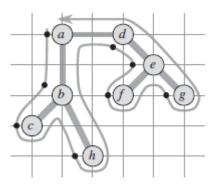


• Identify the MST from a. h g e $\sqrt{2}/d$ 2/d $\sqrt{5}/b$ • • • h g $\sqrt{2}/e$ $\sqrt{2}/e$ $\sqrt{5}/b$ h h g $\sqrt{2}/e$ $\sqrt{5}/b$ $\sqrt{5}/b$ a d

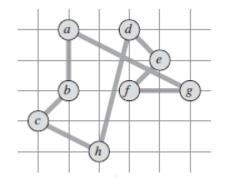
h

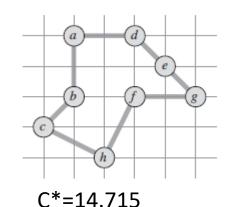
27

Pre-order tree walk on the MST



- $\{a, b, c, d, e, f, g, h\} \rightarrow \{a, b, c, h, d, e, f, g\}$
- Add the root a to the end, so we have $\langle a, b, c, h, d, e, f, g, a \rangle$

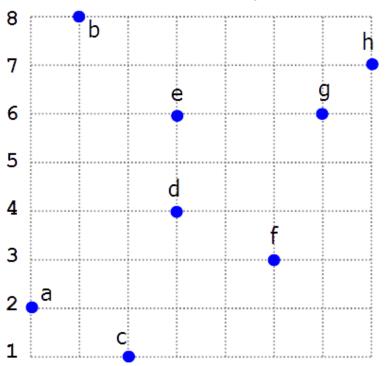


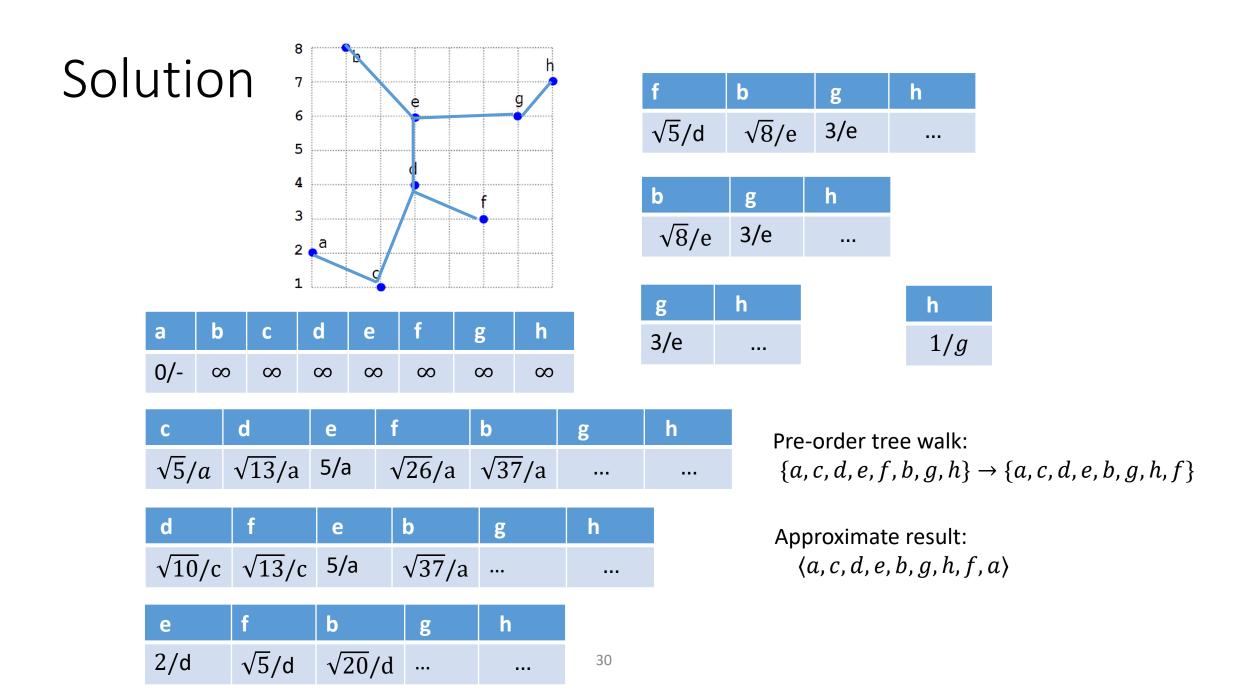


C=19.074

Mini quiz (also on Moodle)

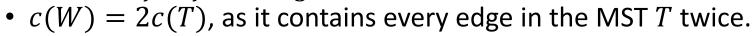
- Compute an approximate TSP tour:
 - Use vertex *a* as the starting vertex
 - When there is a choice (in Prim's and the pre-order tree walk), choose the alphabetically "smaller" vertex.



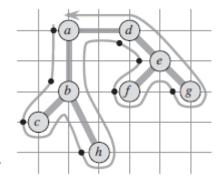


- Let H^* denote an optimal cycle and H denote the cycle identified by our approximation algorithm. Let T be a minimum spanning tree.
- By deleting any edge from H^* , we will get a spanning tree.
- Thus, we have $c(T) \leq c(H^*)$.
 - This is the lower bound.
- What is the relationship between c(H) and the lower bound c(T)?
 - To this end, we introduce a new concept called full walk.

- A *full walk* of a tree *T* lists the vertices when they are first visited and also whenever they are returned to after a visit to a sub-tree.
- Full walk, denoted as W:
 - [*a*, *b*, *c*, *b*, *h*, *b*, *a*, *d*, *e*, *f*, *e*, *g*, *e*, *d*, *a*].
 - ⟨a, b⟩, ⟨b, c⟩, ⟨c, b⟩, ⟨b, h⟩, ⟨h, b⟩, ⟨b, a⟩, ⟨a, d⟩, ⟨a, d⟩, ⟨d, e⟩, ⟨e, f⟩, ⟨f, e⟩, ⟨e, g⟩, ⟨e, d⟩, ⟨d, a⟩.

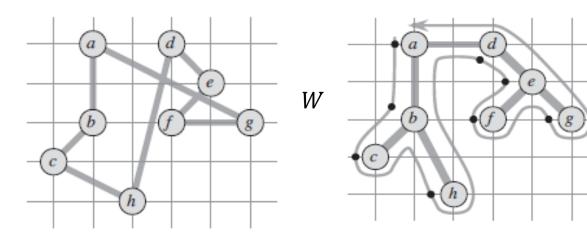


- Consider the lower bound $c(T) \leq c(H^*)$, we have
 - $c(W) \leq 2c(H^*)$
- What is the relationship between the full walk *W* and the approximated cycle *H*?
 - c(W) and c(H)?



- Pre-order walk: {*a*, *b*, *c*, *h*, *d*, *e*, *f*, *g*}
 - $H = \langle a, b \rangle, \langle b, c \rangle, \langle c, h \rangle, \langle h, d \rangle, \langle d, e \rangle, \langle e, f \rangle, \langle f, g \rangle, \langle g, a \rangle$
 - $W = \langle a, b \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle b, h \rangle, \langle h, b \rangle, \langle b, a \rangle, \langle a, d \rangle, \langle d, e \rangle, \langle e, f \rangle, \langle f, e \rangle, \langle e, g \rangle, \langle g, e \rangle, \langle e, d \rangle, \langle d, a \rangle.$

Н	W	
$\langle a,b \rangle$	$\langle a, b \rangle$	
$\langle b, c \rangle$	$\langle b, c \rangle$	
$\langle c,h \rangle$	$\langle c, b \rangle, \langle b, h \rangle$	Н
$\langle h, d \rangle$	$\langle h, b \rangle, \langle b, a \rangle, \langle a, d \rangle$	11
$\langle d, e \rangle$	$\langle d, e \rangle$	
$\langle e, f \rangle$	$\langle e, f \rangle$	
$\langle f,g \rangle$	$\langle f, e \rangle, \langle e, g \rangle$	
$\langle g,a \rangle$	$\langle g, e \rangle, \langle e, d \rangle, \langle d, a \rangle$	



Due to triangle inequality, we have $c(H) \le c(W)$. Thus, $c(H) \le c(W) \le 2c(H^*)$ 33

- From $c(H) \le c(W) \le 2c(H^*)$, we have
 - $\frac{c(H)}{c(H^*)} \leq 2 \rightarrow$ Thus, approximation ratio is 2.
- This means that the approximate cycle will never have more than twice distance of the optimal cycle.

No efficient ρ -approximation

• Do all NP-complete problems have polynomial ρ -approximation algorithms (where ρ is a constant)?

• No!

- Next, we will prove that the general TSP problem cannot have a polynomial ρ -approximation algorithm, unless P = NP.
- In the general TSP problem, we drop the assumption that the cost function c satisfies the triangle inequality.
 - E.g., use travel times as costs, but not Euclidean distances.

Proof sketch

- Given a graph G = (V, E), a *Hamiltonian cycle* of G is a simple cycle that contains each vertex in V.
- What is the Hamiltonian-cycle problem?
 - A decision problem: does a graph *G* have a Hamiltonian cycle?
 - It is a *NP*-complete problem, Theorem 34.13.
 - Solving it in polynomial time implies P = NP, Theorem 34.4.
- Proof by *contradiction*:
 - Since the Hamiltonian cycle problem is NP-complete, no polynomial time algorithms exist unless P = NP.
 - If there exists a *polynomial* ρ -approximation algorithm A for solving general TSP, we are also able to use A to solve the Hamiltonian-cycle problem.
 - Recall that *A* is polynomial. This means that we use *A* to solve the Hamiltonian cycle problem in *polynomial* time.
 - This is a contradiction, unless P = NP. In other words, if $P \neq NP$, this is a contradiction.

Hamiltonian cycle problem to General TSP

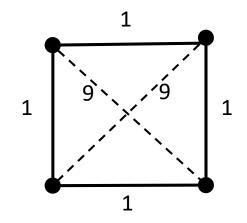
- Suppose we have a polynomial time, approximation algorithm A with approximation ratio ρ for general TSP.
 - Assume ρ is an integer.
- We now show how to use A to solve the Hamiltonian cycle problem.
 - Given a graph G = (V, E), whether or not there is a Hamiltonian cycle in G.
- We turn G into a **complete** graph G' = (V, E')
 - Assign an integer cost to each edge in E'.

 $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ \rho |V| + 1 & \text{otherwise} \end{cases}$

- For example, assuming that we have $\rho = 2$, then we have the edge weights of 2|V| + 1 for all newly added edges in E'.
- Now we consider a general TSP on G' with cost function c.

Hamiltonian cycle problem to General TSP

• Assume
$$\rho = 2. |V| = 4.$$



$$c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ \rho |V| + 1 & \text{otherwise} \end{cases}$$

The weights do not satisfy triangle-inequality anymore.

- If the original graph G has a Hamiltonian cycle H^*
 - Each edge should have cost 1 and in total |V| edges. Thus, H^* 's cost is |V|, i.e., $c(H^*) = |V|$.
 - This example: $c(H^*) = 4$.
 - If we use the ρ -approximation algorithm A, it will return a cycle H with cost at most $\rho|V|$, i.e., $c(H) \leq \rho(H^*) = \rho|V|$.
 - This example: $c(H) \leq 8$.

Hamiltonian cycle problem to General TSP $c(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ \rho |V|+1 & \text{otherwise} \end{cases}$

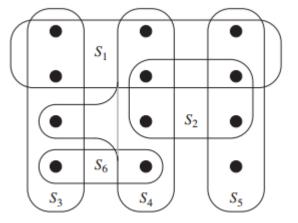
- If the original graph G does not have a Hamiltonian cycle
 - Then any Hamiltonian cycle in G' must use some (at least one) edges that are not in E, i.e., some newly added edges.
 - In the best case, we use only one newly added edge, we have $(\rho|V| + 1) + (|V| 1) = \rho|V| + |V| > \rho|V|$
 - This example: $1 + 1 + 1 + 9 = 12 > \rho |V| = 8$

Hamiltonian cycle problem to General TSP

- So this means that, if the $\rho\text{-approximation}$ algorithm A returns
 - A cycle whose cost is at most $\rho |V|$, G has a Hamiltonian cycle.
 - A cycle whose cost is more than $\rho|V|$, G has no Hamiltonian cycle.
- Therefore, we can use A to solve the Hamiltonian-cycle in polynomial time because A is a polynomial approximation algorithm.
- Since the Hamiltonian-cycle problem is NP-complete, there does not exist a polynomial time algorithm unless P = NP.
- This is a contradiction unless P = NP.

Set-covering problem

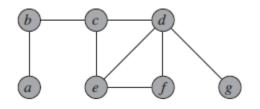
- The set-covering problem
- Given a finite set X and a family F of subsets of X. The problem is to find a minimum-size subset $C \subseteq F$ whose members cover all of X.
 - Black dots are the elements in X.
 - $F = \{S_1, S_2, S_3, S_4, S_5, S_6\}$ each S_i contains some elements in X (black dots).
 - $C^* = \{S_3, S_4, S_5\}$
- A greedy approximation algorithm
 - At each stage, picking up the set S that covers the greatest number of remaining uncovered elements.
 - $C = \{S_1, S_4, S_5, S_3\}$
 - $(\ln |X| + 1)$ -approximation algorithm
 - Approximation ratio is not a constant anymore.



Set-covering vs. vertex cover

2 In Lecture 11, we have seen a 2-approximation algorithm (denoted as ALG1) for solving the **vertex cover** problem. We also briefly talked about a $(\ln |X| + 1)$ -approximation algorithm (denoted as ALG2) for solving the **set cover** problem.

- (10 points) Actually, the **set cover** problem can be regarded as a generalization of the vertex cover problem. Show how can you transform a vertex cover problem into a set cover problem.
- X represents all edges.
- Each vertex is a subset of *X*, which contains the edges that are incident to the vertex.



X = {ab, bc, cd, ce, de, df, dg, ef}
S_c = {bc, cd, ce}

ILO of Lecture 11

- Approximation algorithms
 - to understand the concepts of approximation ratio, approximation scheme, approximation algorithm;
 - to understand the examples of approximation algorithms for the problems of vertex-cover and traveling-salesman.