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ILO of Lecture 11

• Approximation algorithms
• to understand the concepts of approximation ratio and approximation 

algorithm;

• to understand the examples of approximation algorithms for the problems of 
vertex-cover and traveling-salesman.
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Agenda

• P, NP, and NP-complete

• Approximation ratio, approximation algorithm, and approximation 
scheme

• Approximation algorithm for vertex-cover

• Approximation algorithm for traveling-salesman
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𝑃, 𝑁𝑃, 𝑁𝑃-complete

• 𝑃
• Problems that are solvable in polynomial time, nO(1).

• 𝑁𝑃
• Problems that are verifiable in polynomial time, nO(1).

• 𝑁𝑃-complete
• A problem is in 𝑁𝑃, and is as hard as any problem in 𝑁𝑃.
• No polynomial-time algorithm has yet been discovered.
• Nobody has yet been able to determine conclusively whether 𝑁𝑃-complete 

problems are in fact solvable in polynomial time

• 𝑃 = 𝑁𝑃 or that 𝑃 ≠ 𝑁𝑃.
• ?
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Example

• Subset sum problem
• Given a set of 𝑛 integers, is there a non-empty subset whose sum is 𝑥, e.g., 0?

• Consider set {−3, −2, 1, 5, 8}

• NP? 
• Yes, given any subset, you can verify if its sum is x in linear time 𝑂(𝑛). 

• Is sum of {1, 5, 8} = 10?

• P? 
• No, in the worst case, in order to identify a non-empty subset whose sum is 𝑥, 

we need to enumerate all 2𝑛 possible subsets, thus having exponential 
runtime
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Summary

Problems Verifiable in Polynomial time Solvable in polynomial time

𝑃 Yes Yes

𝑁𝑃 Yes Yes or Unknown

𝑁𝑃-Complete Yes Unknown
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Handling NP-complete problems

• Many interesting and important problems are NP-complete. 
• Knapsack problem

• Travelling salesman problem

• NO! We have some ways to deal with an NP-complete problem.  
• If the actual inputs are small, an algorithm with exponential running time may 

be acceptable. 

• Come up approaches to find near-optimal-- approximation algorithm
solutions in polynomial time. 

• Use heuristics to speed up exponential running time. 
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Agenda

• P, NP, and NP-complete

• Approximation ratio, approximation algorithm, and approximation 
scheme

• Approximation algorithm for vertex-cover

• Approximation algorithm for traveling-salesman
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Approximation ratios

• Suppose that 
• we are working on an optimization problem with input size n; 
• each solution has a cost value, and we want to identify the optimal solution, i.e., the 

one with the minimum or maximum possible cost; 
• optimal solution is C*, returned by an exact algorithm that runs in exponential time; 
• approximate solution is C, returned by an approximation algorithm that runs in 

polynomial time. 

• Maximization problem:
• 0 < C ≤ C* , C*/C gives a factor. 
• E.g., C*=100, C=90, C*/C = 10/9

• Minimization problem:
• 0 < C* ≤ C , C/C* gives a factor. 
• E.g., C*=100, C=110, C/C* = 11/10
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Approximation ratios

• A ρ(n)-approximation algorithm has an approximation ratio ρ(n), if, for 
any input size of n, it satisfies max(

𝐶

𝐶∗
,
𝐶∗

𝐶
) ≤ ρ(n) .

• C is control by ratio ρ(n).
• It provides a guarantee on the performance of an approximation algorithm.

• Consider a 1.2-approximation algorithm with optimal cost C*=100.
• For a minimization problem, the algorithm returns a value that is no larger than 

100*1.2=120. 
• For a maximization problem, the algorithm returns a value that is no smaller than 

100/1.2=83.3. 

• Approximation ratio is never smaller than 1. 

• 1-approximation algorithm produces the optimal solution.
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Approximation scheme

• An approximation scheme for an optimization problem is an 
approximation algorithm that takes as input 
• The problem and a value ε > 0.

• Then, the scheme is a (1+ε)-approximation algorithm.

• Polynomial-time approximation scheme, PTAS
• Scheme runs in polynomial time of input size n for any fixed ε > 0, e.g., O(n2/ε)

• Fully polynomial-time approximation scheme, FPTAS
• Scheme runs in polynomial time of both input size n and 1/ε, e.g., O((1/ε)2n3)
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Exam 2018
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Exam 2018
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Agenda

• P, NP, and NP-complete

• Approximation ratio, approximation algorithm, and approximation 
scheme

• Approximation algorithm for vertex-cover

• Approximation algorithm for traveling-salesman
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The vertex-cover problem

• Given an undirected graph 𝐺 = (𝑉, 𝐸)

• A vertex cover of G is a subset of vertices 𝑉′ ⊆ 𝑉, s.t.,
• For each (𝑢, 𝑣) ∈ 𝐸 , we have 𝑢 ∈ 𝑉′ or 𝑣 ∈ 𝑉′ or both. 

• 𝑉1’ = {𝑢, 𝑣, 𝑤, 𝑥, 𝑦, 𝑧}

• 𝑉2’ = {𝑤, 𝑧}

• 𝑉3’ = {𝑢, 𝑣, 𝑦, 𝑥}

• The size of a vertex cover is the number of vertices in it. 
• Sizes of 𝑉1’, 𝑉2’, and 𝑉3’ are 6, 2, and 4, respectively. 

• Vertex-cover problem: find a vertex cover of minimum size. 

15



Approximation algorithm
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𝐶 = {Ø}
𝐸’ = {𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑐𝑒, 𝑑𝑒, 𝑑𝑓, 𝑑𝑔, 𝑒𝑓}

𝐶 = {𝑏, 𝑐}
𝐸’ = {𝑑𝑒, 𝑑𝑓, 𝑑𝑔, 𝑒𝑓}

𝐶 = {𝑏, 𝑐, 𝑒, 𝑓}
𝐸’ = {𝑑𝑔}

𝐶 = {𝑏, 𝑐, 𝑒, 𝑓, 𝑑, 𝑔}
𝐸’ = {Ø}

Run time: 𝑂(𝑉 + 𝐸)

𝐶∗ = {𝑏, 𝑑, 𝑒}



Approximation ratio

• Approximation ratio
• 𝐶∗ = {𝑏, 𝑑, 𝑒}, 𝐶 = {𝑏, 𝑐, 𝑒, 𝑓, 𝑑, 𝑔}

•
𝐶

𝐶∗
=

6

3
= 2

• What if we are lucky (i.e., having a lucky order in line 4), can we get a 
better solution or even exact solution?
• Visit (𝑑, 𝑒) first. Then 𝑏, 𝑐 → 𝐶 = {𝑑, 𝑒, 𝑏, 𝑐}

•
𝐶

𝐶∗
=

4

3
better than 2.

• What is the approximation ratio then?
• Observing from the two examples, it should be at least 2. 
• Then, we need to prove the ratio. 
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Approximation ratio

• Let 𝐴 denote the set of edges that line 4 picked. 𝐴 ⊆ 𝐸

• To cover the edges in 𝐴, any vertex cover must include at least one 
endpoint of each edge in 𝐴. 
• This is due to the definition of a vertex cover: a vertex cover contains at least 

one vertex of each edge. 
• The optimal vertex cover 𝐶∗ should also include at least one endpoint of each 

edge in 𝐴. 

• No two edges in 𝐴 share an endpoint
• Once an edge is picked in line 4 and is added into 𝐴, all the edges that share 

the edge’s endpoints are deleted from 𝐸’ in line 6. 

• Thus, we have the lower bound |𝐶∗| ≥ |𝐴|.
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Approximation ratio

• When line 4 picks an edge, both endpoints of the edge are added into 
𝐶. 
• We have 𝐶 = 2|𝐴|

• Considering the lower bound |𝐶∗| ≥ |𝐴|, we have
• 𝐶 = 2 𝐴 ≤ 2|𝐶∗|

• Approximation ratio:  
|𝐶|

|𝐶∗|
≤ 2

• Conclusion: we have a 2-approximation algorithm. 
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Reflection on approximation ratio proof

• How can we possibly prove the approximation ratio without even 
knowing the size of an optimal solution?
• Instead of knowing the exact size of an optimal solution, we rely on a lower 

bound on the size of an optimal solution. 
• Vertex-cover problem: |𝐶∗| ≥ |𝐴|

• Next, we consider the relationship between the result returned by an 
approximation and the lower bound.
• 𝐶 = 2|𝐴|

• This is a common methodology used in approximation ratio proof. 
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Agenda

• P, NP, and NP-complete

• Approximation ratio, approximation algorithm, and approximation 
scheme

• Approximation algorithm for vertex-cover

• Approximation algorithm for traveling-salesman
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Traveling-salesman problem (TSP)

• Given 
• A list of cities and the distance between each pair of cities. 

• Compute 
• the shortest path that visits each city exactly once and returns to the origin city or 

shortest simple cycle with all vertices?

• Given a complete undirected graph 𝐺 = (𝑉, 𝐸)
• Every pair of vertices is connected by an edge. 
• Each vertex has 𝑉 − 1 edges to all remaining vertices.

• For each edge u, v ∈ 𝐸, it has a nonnegative integer cost 𝑐(𝑢, 𝑣), e.g., the 
Euclidean distance. 

• Identify a Hamiltonian cycle of G with minimum cost. 
• A Hamiltonian cycle is a simple cycle that contains each vertex in 𝑉.
• A simple cycle is a path (𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘) where 𝑣0 = 𝑣𝑘 and 𝑣1, 𝑣2, … , 𝑣𝑘 are distinct. 
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Simplified TSP

• The cost function c satisfies triangle inequality.  

• For all 𝑢, 𝑣, 𝑤 ∈ 𝑉 :
• 𝑐(𝑢, 𝑤) ≤ 𝑐(𝑢, 𝑣) + 𝑐(𝑣, 𝑤)

• These are natural simplifications
• Vertices – points in the plane.  

• Cost of an edge – Euclidean distance between the two vertices of the edge. 

• General TSP
• Without the triangle inequality assumption.

23
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Another simpler TSP

• A spanning tree 𝑇 for a connected graph G is a tree that includes all 
the vertices of 𝐺. Then we want to find a spanning tree of minimum 
cost---minimum spanning trees problem.

• Is Hamiltonian cycle a tree? 
• No, because it is a cycle.

• Can we change a Hamiltonian cycle to a tree?
• Yes, by deleting an edge to break the cycle.
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Approximation algorithm

25

• Choose a vertex, say vertex 𝑟,  as root. 
• Compute a MST from the chosen root 𝑟. 
• Preorder tree work on the MST. 

• Visits each vertex before visiting its children.



MST-Prim’s algorithm
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Initialize all vertices: 𝑂(|𝑉|)

Initialize a priority queue with |𝑉| elements. 
𝑂(|𝑉|)

While loop: |𝑉| times
Line 7: Each 𝑄.extractMin() takes 𝑂(lg |𝑉|), in total 
𝑂(|𝑉|lg |𝑉|).
Line 8: For loop: given a vertex, it iterates on all its 
adjacent vertices.
Together with the while loop, in total it iterates |𝐸|.
Each iteration it calls 𝑄.modifyKey, which takes 
𝑂(lg |𝑉|).
In total, 𝑂(|𝐸|lg |𝑉| + |𝑉|lg |𝑉|) = 𝑂(|𝐸|lg |𝑉|).



Example • Choose vertex 𝑎 as the root

• Identify the MST from a. 
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a b c d e f g h

0/- ∞ ∞ ∞ ∞ ∞ ∞ ∞

b d c e f g h

2/𝑎 2/a … … … … …

c d h e f g

2/𝑏 2/a 5/𝑏 … … …

d h f g e

2/a 5/𝑏 … … …

e f h g

2/d 2/d 5/𝑏 …

f g h

2/e 2/e 5/𝑏

g h

2/e 5/𝑏

h

5/𝑏



Pre-order tree walk on the MST

• {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ} → {𝑎, 𝑏, 𝑐, ℎ, 𝑑, 𝑒, 𝑓, 𝑔}

• Add the root a to the end, so we have 〈𝑎, 𝑏, 𝑐, ℎ, 𝑑, 𝑒, 𝑓, 𝑔, 𝑎〉

28
C=19.074 C*=14.715



Mini quiz (also on Moodle)

• Compute an approximate TSP tour:
• Use vertex a as the starting vertex

• When there is a choice (in Prim's and the pre-order tree walk),
choose the alphabetically “smaller” vertex.
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Solution
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a b c d e f g h

0/- ∞ ∞ ∞ ∞ ∞ ∞ ∞

c d e f b g h

5/𝑎 13/a 5/a 26/a 37/a … …

d f e b g h

10/c 13/c 5/a 37/a … …

e f b g h

2/d 5/d 20/d … …

f b g h

5/d 8/e 3/e …

b g h

8/e 3/e …

g h

3/e …

h

1/𝑔

Pre-order tree walk:
{𝑎, 𝑐, 𝑑, 𝑒, 𝑓, 𝑏, 𝑔, ℎ} → {𝑎, 𝑐, 𝑑, 𝑒, 𝑏, 𝑔, ℎ, 𝑓}

Approximate result:
〈𝑎, 𝑐, 𝑑, 𝑒, 𝑏, 𝑔, ℎ, 𝑓, 𝑎〉



Approximation ratio

• Let 𝐻∗ denote an optimal cycle and 𝐻 denote the cycle identified by 
our approximation algorithm.  Let 𝑇 be a minimum spanning tree. 

• By deleting any edge from 𝐻∗, we will get a spanning tree.

• Thus, we have 𝑐 𝑇 ≤ 𝑐(𝐻∗). 
• This is the lower bound. 

• What is the relationship between 𝑐(𝐻) and the lower bound 𝑐(𝑇)? 
• To this end, we introduce a new concept called full walk. 
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Approximation ratio

• A full walk of a tree 𝑇 lists the vertices when they are first visited and also 
whenever they are returned to after a visit to a sub-tree. 

• Full walk, denoted as 𝑊: 
• [𝑎, 𝑏, 𝑐, 𝑏, ℎ, 𝑏, 𝑎, 𝑑, 𝑒, 𝑓, 𝑒, 𝑔, 𝑒, 𝑑, 𝑎]. 

• 𝑎, 𝑏 , 𝑏, 𝑐 , 𝑐, 𝑏 , 𝑏, ℎ , ℎ, 𝑏 , 𝑏, 𝑎 , 𝑎, 𝑑 , 𝑎, 𝑑 ,
𝑑, 𝑒 , 𝑒, 𝑓 , 𝑓, 𝑒 , 𝑒, 𝑔 , 𝑒, 𝑑 , 𝑑, 𝑎 .  

• 𝑐(𝑊) = 2𝑐(𝑇), as it contains every edge in the MST 𝑇 twice. 

• Consider the lower bound 𝑐 𝑇 ≤ 𝑐(𝐻∗), we have 
• 𝑐 𝑊 ≤ 2𝑐(𝐻∗)

• What is the relationship between the full walk 𝑊 and the approximated 
cycle 𝐻? 
• 𝑐(𝑊) and 𝑐(𝐻)? 
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Approximation ratio
• Pre-order walk: {𝑎, 𝑏, 𝑐, ℎ, 𝑑, 𝑒, 𝑓, 𝑔}

• 𝐻 = 〈𝑎, 𝑏〉, 〈𝑏, 𝑐〉, 〈𝑐, ℎ〉, 〈ℎ, 𝑑〉, 〈𝑑, 𝑒〉, 〈𝑒, 𝑓〉, 〈𝑓, 𝑔〉, 〈𝑔, 𝑎〉

• 𝑊 = 𝑎, 𝑏 , 𝑏, 𝑐 , 𝑐, 𝑏 , 𝑏, ℎ , ℎ, 𝑏 , 𝑏, 𝑎 , 𝑎, 𝑑 , 𝑑, 𝑒 , 𝑒, 𝑓 ,

〈𝑓, 𝑒〉, 〈𝑒, 𝑔〉, 〈𝑔, 𝑒〉, 〈𝑒, 𝑑〉, 〈𝑑, 𝑎〉.
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𝑊𝐻

Due to triangle inequality, we have 
𝑐 𝐻 ≤ 𝑐(𝑊). Thus, 𝑐 𝐻 ≤ 𝑐 𝑊 ≤ 2𝑐(𝐻∗)

𝐻 𝑊

〈𝑎, 𝑏〉 〈𝑎, 𝑏〉

〈𝑏, 𝑐〉 〈𝑏, 𝑐〉

〈𝑐, ℎ〉 𝑐, 𝑏 , 〈𝑏, ℎ〉

〈ℎ, 𝑑〉 〈ℎ, 𝑏〉, 〈𝑏, 𝑎〉, 〈𝑎, 𝑑〉

〈𝑑, 𝑒〉 〈𝑑, 𝑒〉

〈𝑒, 𝑓〉 〈𝑒, 𝑓〉

〈𝑓, 𝑔〉 〈𝑓, 𝑒〉, 〈𝑒, 𝑔〉

〈𝑔, 𝑎〉 〈𝑔, 𝑒〉, 〈𝑒, 𝑑〉, 〈𝑑, 𝑎〉



Approximation ratio

• From 𝑐 𝐻 ≤ 𝑐 𝑊 ≤ 2𝑐(𝐻∗), we have

•
𝑐(𝐻)

𝑐(𝐻∗)
≤ 2 → Thus, approximation ratio is 2. 

• This means that the approximate cycle will never have more than 
twice distance of the optimal cycle. 
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No efficient 𝜌-approximation

• Do all 𝑁𝑃-complete problems have polynomial 𝜌-approximation 
algorithms (where 𝜌 is a constant)?
• No! 

• Next, we will prove that the general TSP problem cannot
have a polynomial 𝜌-approximation algorithm, unless 𝑃 = 𝑁𝑃. 

• In the general TSP problem, we drop the assumption that the cost 
function c satisfies the triangle inequality. 

• E.g., use travel times as costs, but not Euclidean distances.
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Proof sketch

• Given a graph 𝐺 = (𝑉, 𝐸), a Hamiltonian cycle of 𝐺 is a simple cycle that 
contains each vertex in 𝑉. 

• What is the Hamiltonian-cycle problem? 
• A decision problem: does a graph 𝐺 have a Hamiltonian cycle? 
• It is a 𝑁𝑃-complete problem, Theorem 34.13. 
• Solving it in polynomial time implies 𝑃 = 𝑁𝑃, Theorem 34.4.

• Proof by contradiction: 
• Since the Hamiltonian cycle problem is 𝑁𝑃-complete, no polynomial time algorithms 

exist unless 𝑃 = 𝑁𝑃. 
• If there exists a polynomial 𝜌-approximation algorithm 𝐴 for solving general TSP, we are also 

able to use 𝐴 to solve the Hamiltonian-cycle problem. 
• Recall that 𝐴 is polynomial. This means that we use 𝐴 to solve the Hamiltonian cycle problem 

in polynomial time. 
• This is a contradiction, unless 𝑃 = 𝑁𝑃. In other words, if 𝑃 ≠ 𝑁𝑃, this is a contradiction. 
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• Suppose we have a polynomial time, approximation algorithm 𝐴 with 
approximation ratio 𝜌 for general TSP.  
• Assume 𝜌 is an integer. 

• We now show how to use 𝐴 to solve the Hamiltonian cycle problem.
• Given a graph 𝐺 = (𝑉, 𝐸), whether or not there is a Hamiltonian cycle in 𝐺. 

• We turn 𝐺 into a complete graph 𝐺’ = (𝑉, 𝐸’)
• Assign an integer cost to each edge in 𝐸’.

• For example, assuming that we have 𝜌 = 2, then we have the edge weights of 
2|𝑉| + 1 for all newly added edges in 𝐸’. 

• Now we consider a general TSP on 𝐺’ with cost function 𝑐.  

Hamiltonian cycle problem to General TSP
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• Assume 𝜌 = 2. |𝑉| = 4.

• If the original graph 𝐺 has a Hamiltonian cycle 𝐻∗

• Each edge should have cost 1 and in total |𝑉| edges. Thus, 𝐻∗’s cost is |𝑉|, i.e., 𝑐(𝐻∗) = |𝑉|.
• This example: 𝑐(𝐻∗) = 4.

• If we use the ρ-approximation algorithm A, it will return a cycle H with cost at most 𝜌|𝑉|, i.e., 
𝑐 𝐻 ≤ 𝜌 𝐻∗ = 𝜌|𝑉| .
• This example: 𝑐 𝐻 ≤ 8.

Hamiltonian cycle problem to General TSP

38

1

1 1

1

9 9

The weights do not satisfy 
triangle-inequality anymore. 



• Assume 𝜌 = 2. |𝑉| = 4.

• If the original graph 𝐺 does not have a Hamiltonian cycle
• Then any Hamiltonian cycle in 𝐺’ must use some (at least one) edges that are not in 𝐸, i.e., some 

newly added edges. 
• In the best case, we use only one newly added edge, we have (𝜌|𝑉| + 1) + (|𝑉| − 1) = 𝜌|𝑉| + |𝑉| > 𝜌|𝑉|
• This example: 1 + 1 + 1 + 9 = 12 > 𝜌|𝑉| = 8

Hamiltonian cycle problem to General TSP
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1

1

1

9

9 9



Hamiltonian cycle problem to General TSP

• So this means that, if the 𝜌-approximation algorithm 𝐴
returns
• A cycle whose cost is at most 𝜌|𝑉|, 𝐺 has a Hamiltonian cycle. 

• A cycle whose cost is more than 𝜌|𝑉|, 𝐺 has no Hamiltonian cycle. 

• Therefore, we can use 𝐴 to solve the Hamiltonian-cycle in 
polynomial time because 𝐴 is a polynomial approximation 
algorithm. 

• Since the Hamiltonian-cycle problem is 𝑁𝑃-complete, there 
does not exist a polynomial time algorithm unless 𝑃 = 𝑁𝑃.  

• This is a contradiction unless 𝑃 = 𝑁𝑃. 
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Set-covering problem

• The set-covering problem

• Given a finite set 𝑋 and a family 𝐹 of subsets of 𝑋. The problem 
is to find a minimum-size subset 𝐶 ⊆ 𝐹 whose members cover 
all of 𝑋. 
• Black dots are the elements in 𝑋. 
• 𝐹 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6} each 𝑆𝑖 contains 

some elements in 𝑋 (black dots). 

• 𝐶∗ = {𝑆3, 𝑆4, 𝑆5}

• A greedy approximation algorithm 
• At each stage, picking up the set S that covers the greatest number 

of remaining uncovered elements. 

• 𝐶 = {𝑆1, 𝑆4, 𝑆5, 𝑆3}
• (ln |𝑋| + 1)-approximation algorithm

• Approximation ratio is not a constant anymore. 
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Set-covering vs. vertex cover

42

• 𝑋 represents all edges. 
• Each vertex is a subset of 𝑋, which contains the edges that are 

incident to the vertex. 

• 𝑋 = {𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑐𝑒, 𝑑𝑒, 𝑑𝑓, 𝑑𝑔, 𝑒𝑓}
• 𝑆𝑐 = {𝑏𝑐, 𝑐𝑑, 𝑐𝑒}



ILO of Lecture 11

• Approximation algorithms
• to understand the concepts of approximation ratio, approximation scheme, 

approximation algorithm;

• to understand the examples of approximation algorithms for the problems of 
vertex-cover and traveling-salesman.

43


