Advanced Algorithms

Lecture 11
Approximation Algorithms
for NP-Complete Problems

Tung Kieu
tungkvt@cs.aau.dk

ILO of Lecture 11

* Approximation algorithms

* to understand the concepts of approximation ratio and approximation
algorithm;

* to understand the examples of approximation algorithms for the problems of
vertex-cover and traveling-salesman.

Agenda

* P, NP, and NP-complete

* Approximation ratio, approximation algorithm, and approximation
scheme

e Approximation algorithm for vertex-cover
* Approximation algorithm for traveling-salesman

P, NP, NP-complete

e P

* Problems that are solvable in polynomial time, n°{),
e NP

* Problems that are verifiable in polynomial time, n°),

e NP-complete
 Aproblemisin NP, and is as hard as any problem in NP.
* No polynomial-time algorithm has yet been discovered.

* Nobody has yet been able to determine conclusively whether NP-complete
problems are in fact solvable in polynomial time

e P=NPorthatP # NP.

. ?

Example

e Subset sum problem
* Given a set of n integers, is there a non-empty subset whose sum is x, e.g., 0?
 Considerset{-3,-2,1,5, 8}
* NP?
* Yes, given any subset, you can verify if its sum is x in linear time 0 (n).
 |Issumof{l,5, 8 =107
. P?

* No, in the worst case, in order to identify a non-empty subset whose sumis x,
we need to enumerate all 2™ possible subsets, thus having exponential
runtime

summary

Verifiable in Polynomial time Solvable in polynomial time

P Yes Yes

NP Yes Yes or Unknown

NP-Complete Yes Unknown

Handling NP-complete problems

* Many interesting and important problems are NP-complete.

e Knapsack problem
* Travelling salesman problem

* NO! We have some ways to deal with an NP-complete problem.
* |f the actual inputs are small, an algorithm with exponential running time may
be acceptable.

 Come up approaches to find near-optimal-- approximation algorithm
solutions in polynomial time.

* Use heuristics to speed up exponential running time.

Agenda

* P, NP, and NP-complete

* Approximation ratio, approximation algorithm, and approximation
scheme

e Approximation algorithm for vertex-cover

* Approximation algorithm for traveling-salesman

Approximation ratios

. Suppose that
we are working on an optimization problem with input size n;

* each solution has a cost value, and we want to identify the optimal solution, i.e., the
one with the minimum or maximum possible cost;

. optlmal solution is C*, returned by an exact algorithm that runs in exponential time;
. i)rommate solution is C, returned by an approximation algorithm that runs in
nomial time.
. IVIaX|m|zat|on problem:
e 0<C<< C*, C*/Cgives a factor.
e E.g.,, C*=100, C=90, C*/C=10/9

* Minimization problem:
e 0<C*< (C, C/C*gives a factor.
e E.g., C*=100, C=110, C/C*=11/10

Approximation ratios

* A p(n)-approximation algorithm has gng\pproximation ratio p(n), if, for
any input size of n, it satisfies max(a,?) < p(n).

» Cis control by ratio p(n).

* |t provides a guarantee on the performance of an approximation algorithm.
e Consider a 1.2-approximation algorithm with optimal cost C*=100.

* For a minimization problem, the algorithm returns a value that is no larger than
100*1.2=120.

* For a maximization problem, the algorithm returns a value that is no smaller than
100/1.2=83.3.

* Approximation ratio is never smaller than 1.
e 1-approximation algorithm produces the optimal solution.

Approximation scheme

* An approximation scheme for an optimization problem is an
approximation algorithm that takes as input

* The problem and a value € > 0.
* Then, the scheme is a (1+€&)-approximation algorithm.

* Polynomial-time approximation scheme, PTAS
* Scheme runs in polynomial time of input size n for any fixed € > 0, e.g., O(n%¥)

* Fully polynomial-time approximation scheme, FPTAS
e Scheme runs in polynomial time of both input size n and 1/, e.g., O((1/g)?n3)

Exam 2018

5. Take a careful look at the following statements and decide if they are correct.

5.1 (2 points) Consider an approximation algorithm with approximation ratio 1.1
for solving a NP-complete problem P. Assume that P is a maximization problem
and its optimal solution is 100. Then, the approximation algorithm may return a

value 105.
1) Correct

2) Wrong

5.2 (2 points) Consider an approximation algorithm with approximation ratio 2
for solving a NP-complete problem P. Assume that P is a minimization problem
and its optimal solution is 100. Then, the approximation algorithm may return a

value 201.
1) Correct

2) Wrong

12

Exam 2018

5. Take a careful look at the following statements and decide if they are correct.

5.1 (2 points) Consider an approximation algorithm with approximation ratio 1.1
for solving a NP-complete problem P. Assume that P is a maximization problem
and its optimal solution is 100. Then, the approximation algorithm may return a
value 105.

1) Correct m 2) Wrong

5.2 (2 points) Consider an approximation algorithm with approximation ratio 2
for solving a NP-complete problem P. Assume that P is a minimization problem
and its optimal solution is 100. Then, the approximation algorithm may return a
value 201.

1) Correct m 2) Wrong

13

Agenda

* P, NP, and NP-complete

* Approximation ratio, approximation algorithm, and approximation
scheme

* Approximation algorithm for vertex-cover

* Approximation algorithm for traveling-salesman

The vertex-cover problem

* Given an undirected graph ¢ = (V, E)

* A vertex cover of G is a subset of vertices V' C V, s.t.
* Foreach (u,v) € E,wehaveu € V' or v € V' or both.

* The size of a vertex cover is the number of vertices in it.
* Sizesof V', V,’,and V5" are 6, 2, and 4, respectively.

 Vertex-cover problem: find a vertex cover of minimum size.

Approximation algorithm

APPROX-VERTEX-COVER (G)

1 C=90 C = {0}

2 E=GE E’ = {ab, bc,cd, ce,de,df,dg, e
3 while E' #£ 0 tab, bc,cd, ce, de, df, dg, ef }
4 let (1, v) be an arbitrary edge of £’

5 C =CuU{uv}

6 remove from E’every edge incident on either u or v

7 return C

‘ . .l C={b,c)
. | E’' = {de,df,dg,ef}

o [—0]® F=ig

16

APPROX-VERTEX-COVER ()

Approximation ratio Lesn
3 while E" #£)
4 let (1, v) be an arbitrary edge of E’
. . . 5 C =CUfu. v}
° ApprOXI mation ratio 6 remove from E’ every edge incident on either ¥ or v
e C* = {b, d’ e}, C = {b’ c,e, f’ d’ g} 7 return C
C 6
° — = — =
Cc* 3

 What if we are lucky (i.e., having a lucky order in line 4), can we get a
better solution or even exact solution?

* Visit (d, e) first. Then (b,c) - C ={d, e, b, c}

4

C
e — = - better than 2.
c* 3

* What is the approximation ratio then?
* Observing from the two examples, it should be at least 2.
* Then, we need to prove the ratio.

Approximation ratio

* Let A denote the set of edges that line 4 picked. A € E

* To cover the edges in 4, any vertex cover must include at least one
endpoint of each edge in A.

e This is due to the definition of a vertex cover: a vertex cover contains at least
one vertex of each edge.

* The optimal vertex cover C* should also include at least one endpoint of each
edge in A.

* No two edges in A share an endpoint

* Once an edge is picked in line 4 and is added into A, all the edges that share
the edge’s endpoints are deleted from E’ in line 6.

* Thus, we have the lower bound |C*| = |A4].

Approximation ratio

* When line 4 picks an edge, both endpoints of the edge are added into
C.

* We have |C| = 2|A4]

* Considering the lower bound |C*| = |A|, we have
* |C] = 2]4]| < 2|C7]

* Approximation ratio % <?2

* Conclusion: we have a 2-approximation algorithm.

Reflection on approximation ratio proof

* How can we possibly prove the approximation ratio without even

knowing the size of an optimal solution?
* Instead of knowing the exact size of an optimal solution, we rely on a lower
bound on the size of an optimal solution.
* Vertex-cover problem: [C*| = |A]|
* Next, we consider the relationship between the result returned by an
approximation and the lower bound.
* |C| = 2]A]

* This is a common methodology used in approximation ratio proof.

Agenda

* P, NP, and NP-complete

* Approximation ratio, approximation algorithm, and approximation
scheme

e Approximation algorithm for vertex-cover

* Approximation algorithm for traveling-salesman

Traveling-salesman problem (TSP)

* Given
* Alist of cities and the distance between each pair of cities.

* Compute

* the shortest path that visits each city exactly once and returns to the origin city or
shortest simple cycle with all vertices?

* Given a complete undirected graph G = (V, E)
e Every pair of vertices is connected by an edge.
 Each vertex has V — 1 edges to all remaining vertices.

* For each edge (u,v) € E, it has a nonnegative integer cost c(u, v), e.g., the
Euclidean distance.

* |dentify a Hamiltonian cycle of G with minimum cost.
* A Hamiltonian cycle is a simple cycle that contains each vertex in V.
* Asimple cycleis a path (v,, v, v, ..., V}) Where v, = v, and v, v,, ..., V,, are distinct.

Simplified TSP

* The cost function c satisfies triangle inequality. W

e Forallu,v,w eV : '
cc(u,w) < c(u,v) + c(v,w)
-

* These are natural simplifications o
* Vertices — points in the plane.
* Cost of an edge — Euclidean distance between the two vertices of the edge.

 General TSP W

* Without the triangle inequality assumption.

18
5
UD J— V

7

Another simpler TSP

* A spanning tree T for a connected graph G is a tree that includes all
the vertices of G. Then we want to find a spanning tree of minimum
cost---minimum spanning trees problem.

* |s Hamiltonian cycle a tree?
* No, because it is a cycle.

* Can we change a Hamiltonian cycle to a tree?
* Yes, by deleting an edge to break the cycle.

Approximation algorithm

APPROX-TSP-TOUR(G. c)

1 selecta vertex r € .V to be a “root” vertex

2 |compute a minimum spanning tree 1 for G from root r

using MST-PRIM(G, c.r)

3 let H be a list of vertices, ordered according to when they are first visited
in a preorder tree walk of T

4 return the hamiltonian cycle H

* Choose a vertex, say vertex r, as root.
 Compute a MST from the chosen root r.
* Preorder tree work on the MST.

e Visits each vertex before visiting its children.

25

MST-Prim’s algorithm

MST=-Prim (G, r)

01
02 Initialize all vertices: O(|V|)
03
04 r.setkey(0)
05 // Q 1s a priority queue RDT |nijtialize a priority queue with |V| elements.
0 oV
07
08 While loop: |V| times
Line 7: Each Q.extractMin() takes O(lg|V]), in total
09
o 0V lig V).
11 Line 8: For loop: given a vertex, it iterates on all its

adjacent vertices.

Together with the while loop, in total it iterates |E|.
Each iteration it calls Q.modifyKey, which takes
o(g|V]).

In total, O(|E|lg |V| + |V]|Ig|V]) = O(|E|lg|V]).

12

26

Example « Choose vertex a as the root

oSS0 S * |dentify the MST from a.
/A “%} e |t |h g
{:}x& /- Vv2/d 2/d +s5/p ..

f g |h

nnnnnnnn Vije V2/e 5/b

e D DR
ﬂﬂﬂ_ﬂﬂ_ V2/e V5/b V5/b

2/a 2/a ..
CEEECENCAEETS ﬁ
V2/b 2/a \5/b . zfs Hx@}
ERCERIREIEY N\

&l_/

2/a 5/b . . 2

Pre-order tree walk on the MST

s(@)——(@)
JONRGZNG
{©
0

*{a,b,c,d,e,f,g,h} > {a,b,c,h,d,e, f, g}
* Add the root a to the end, so we have (a, b,c, h,d, e, f, g, a)

@@ @@
© @
OO ©® O D O
) @)

C=19.074 C*=14.715

Mini quiz (also on Moodle)

* Compute an approximate TSP tour:

* Use vertex g as the starting vertex

 When there is a choice (in Prim's and the pre-order tree walk),

choose the alphabetically “smaller” vertex.
B prosainans 9 ELTETRRRREVRTELTPIED Brmsseresn sy

29

Solution

| N w [n [#2] ~] o4}

nnnnunnn e .. 1/g

coO ©oO O OO

_l-ﬂl-_l.l- pre-order tree walk

\/_/a \/_/a 5/a \/_/a \/_/a {a,c,d,e, f,b,g,h} - {a,c,d, e b,g,h,f}
_-__l-l- Approximate result:
V10/c v13/c 5/a +/37/a - (a,c,d,e,b,g,h,f,a)

2/d +5/d 20/d - 30

Approximation ratio

* Let H* denote an optimal cycle and H denote the cycle identified by
our approximation algorithm. Let T be a minimum spanning tree.

* By deleting any edge from H™, we will get a spanning tree.
* Thus, we have c(T) < c(H").

e This is the lower bound.

* What is the relationship between c¢(H) and the lower bound ¢(T)?
* To this end, we introduce a new concept called full walk.

Approximation ratio

* A full walk of a tree T lists the vertices when they are first visited and also
whenever they are returned to after a visit to a sub-tree.

e Full walk, denoted as W/

$@=1—@)
* [a,b,c,b,h,b,a,d,e, f,e g,e d,a]. . N
* <a, b), (b, C), (C, b)) (br h)l (hl b)r (br a)l (a; d); (Cl, d)) '@ '@j '@j
(d,e), (e, f).(f e) (e g)led)(d a) @
 ¢c(W) = 2¢(T), as it contains every edge in the MST T twice. O

* Consider the lower bound ¢(T) < c(H"), we have
« c(W) < 2c(H")
* What is the relationship between the full walk W and the approximated
cycle H?
e c(W)andc(H)?

Approximation ratio
* Pre-order walk: {a, b,c, h,d,e, f, g}

* H =(a,b),(b,c),{(c,h),(h,d),{d,e),{e). {f,g) (g, a)
* W =(a,b),(b,c),{c,b),(b, h),(h, b),{b, a),{a,d),{(d,e) e f),

(f,e) (e, g)(g.e) e d){d, a).

(a, b) (a, b)

(b,) (b,) Ol @ @ @)

(c, h) (c,b), (b, h) u O w 11 2O
(h, d) (h,b), (b, a), (a, d) O OG- O D/ERlC
(d, e) (d,) - t©

(e, f) (e,) @ f@

(f,9) (f,e) (e, g)

(g9, a) (g,e), (e d)(d, a) Due to triangle inequality, we have

c(H) < c(W).Thus,c(H) < c(W) < 2c(H") 33

Approximation ratio

* Fromc(H) < c(W) < 2c(H™), we have

. CC((:*)) < 2 - Thus, approximation ratio is 2.

* This means that the approximate cycle will never have more than
twice distance of the optimal cycle.

No efficient p-approximation

* Do all NP-complete problems have polynomial p-approximation
algorithms (where p is a constant)?

 No!

* Next, we will prove that the general TSP problem cannot
have a polynomial p-approximation algorithm, unless P = NP.

* In the general TSP problem, we drop the assumption that the cost

function c satisfies the triangle inequality.
* E.g., use travel times as costs, but not Euclidean distances.

Proof sketch

* Given a graph G = (V, E), a Hamiltonian cycle of G is a simple cycle that
contains each vertexin V.

* What is the Hamiltonian-cycle problem?
* A decision problem: does a graph G have a Hamiltonian cycle?
* Itisa NP-complete problem, Theorem 34.13.
* Solving it in polynomial time implies P = NP, Theorem 34.4.

* Proof by contradiction:

* Since the Hamiltonian cycle problem is NP-complete, no polynomial time algorithms
exist unless P = NP.

If there exists a polynomial p-approximation algorithm A for solving general TSP, we are also
able to use A to solve the Hamiltonian-cycle problem.

Recall that A is polynomial. This means that we use A to solve the Hamiltonian cycle problem
in polynomial time.

This is a contradiction, unless P = NP. In other words, if P # NP, this is a contradiction.

Hamiltonian cycle problem to General TSP

* Suppose we have a polynomial time, approximation algorithm A with
approximation ratio p for general TSP.

* Assume p is an integer.

* We now show how to use A to solve the Hamiltonian cycle problem.
* Given agraph G = (V, E), whether or not there is a Hamiltonian cycle in G.

* We turn G into a complete graph ¢ = (V, E’)
e Assign an integer cost to each edge in E’.

_[1 if (u,v)€EE
C(H,V)—‘ .
[p|V]+1 otherwise

* For example, assuming that we have p = 2, then we have the edge weights of
2|V | + 1 for all newly added edges in E’.

* Now we consider a general TSP on G’ with cost function c.

Hamiltonian cycle problem to General TSP

[1 if (u,v)EE
c(u,v)= Vel ofherws
* Assume p = 2.|V| = 4. [pIV]+1 otherwise
1
7. The weights do not satisfy
N 2 triangle-inequality anymore.
9 .79
1 \,\’\ 1
« -9
1

* If the original graph G has a Hamiltonian cycle H*
* Each edge should have cost 1 and in total |V | edges. Thus, H"’s cost is |V|, i.e., c(H*) = [V].
* Thisexample: c(H") = 4.

* If we use the*g-approximation algorithm A, it will return a cycle H with cost at most p|V], i.e.,
c(H) < p(H") = p|V].
* This example: c(H) < 8.

Hamiltonian cycle problem to General TSP

C(u,v):[l if (u,v)EE

e Assume p = 2. |V| = 4, lp‘V|+1 otherwise

* If the original graph G does not have a Hamiltonian cycle
* Then any Hamiltonian cycle in G’ must use some (at least one) edges that are not in E, i.e., some
newly added edges.
* Inthe best case, we use only one newly added edge, we have (p|V|+ 1) + (|V| —=1) = p|V| + |V| > p]|V]|
* Thisexample:1+14+14+9=12 > p|V| = 8

Hamiltonian cycle problem to General TSP

* So this means that, if the p-approximation algorithm A

returns
* A cycle whose cost is at most p|V|, G has a Hamiltonian cycle.
* A cycle whose cost is more than p|V|, G has no Hamiltonian cycle.

* Therefore, we can use A to solve the Hamiltonian-cycle in
polynomial time because A is a polynomial approximation
algorithm.

 Since the Hamiltonian-cycle problem is NP-complete, there
does not exist a polynomial time algorithm unless P = NP.

* This is a contradiction unless P = NP.

Set-covering problem

* The set-covering problem

* Given a finite set X and a family F of subsets of X. The problem
is”toffi)?d a minimum-size subset C € F whose members cover
all of X. T @ |

= o
* Black dots are the elements in X. S ‘e)
s F={5,5,5554,5:S.} each S; contains o — ¢ o
some elements in X (black dots). (.— ‘ o |s .J
. C*={5,5,5) —
EPES (- Se | -) o
* A greedy approximation algorithm NSNS NS

* At each stage, picking up the set S that covers the greatest number
of remaining uncovered elements.

* C={5,54,5553}

* (In|X| + 1)-approximation algorithm
* Approximation ratio is not a constant anymore.

Set-covering vs. vertex cover

2 In Lecture 11, we have seen a 2-approximation algorithm (denoted as ALG1) for
solving the vertex cover problem. We also briefly talked about a (In|X|+ 1)-
approximation algorithm (denoted as ALG2) for solving the set cover problem.

e (10 points) Actually, the set cover problem can be regarded as a general-
ization of the vertex cover problem. Show how can vou transform a vertex
cover problem mto a set cover problem.

* X represents all edges.
* Each vertex is a subset of X, which contains the edges that are i

(e}

incident to the vertex.

« X ={ab,bc,cd,ce,de, df,dg,ef}
« S, ={bc,cd,ce}

42

ILO of Lecture 11

* Approximation algorithms

* to understand the concepts of approximation ratio, approximation scheme,
approximation algorithm;

* to understand the examples of approximation algorithms for the problems of
vertex-cover and traveling-salesman.

43

