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ILO of Lecture 3
• Flow network and maximum flow

 to understand the formalization of flow networks and flows; and the 
definition of the maximum-flow problem. 

 to understand the Ford-Fulkerson method for finding maximum 
flows. 

 to understand the Edmonds-Karp algorithm and to be able to 
analyze its worst-case running time;

 to be able to apply the Ford-Fulkerson method to solve the 
maximum-bipartite-matching problem.
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Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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Flow networks
• What if the weights in a weighted graph represent 

maximum capacities of some flow of material?
 Capacity: a maximum rate at which the material can flow through.
 Pipe network to transport fluid (e.g., water, oil)

 Edges – pipes
 Vertices – junctions of pipes

 Data communication network 
 Edges – network connections of different capacities
 Vertices – routers (do not produce or consume data just move data)

• Concepts (informally): 
 Source vertex s (where material is produced).
 Sink vertex t (where material is consumed).
 For all other vertices – what goes in must go out.
 Goal: maximum rate of material flow from source to sink.
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Formalization
• A flow network G= (V, E) is a directed graph. 

 Each edge (u, v)∈ E has a nonnegative capacity c (u, v) ≥ 0
 If (u, v) is not in E, then c(u, v)=0. 
 If E contains an edge (u, v), then there is no edge (v, u) in the 

reverse direction.
 Two special vertices: a source s and a sink t. 
 For any other vertex v, there is a path s →v→t .

• A flow in G is a real-valued function f: V×V →R. 
 Capacity constraint: for all u, v ∈ V, 0≤ f(u, v) ≤ c(u, v).

 Flow from one vertex to another must be nonnegative and must not 
exceed the given capacity.

 Flow conversation: for all u ∈ V-{s, t}, 

 Total flow into a vertex other than the source and the sink (i.e., vertex 
u) must equal to the total flow out of that vertex. 
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Flow in equals flow out.



Examples

 Left figure: capacity
 Right figure: flow/capacity, if flow=0, we only denote capacity. 

• Edge (s, v1)
 f(s, v1)=11 < c(s, v1)=16
 Capacity constraint is satisfied. 

• V1, which is not the source s and not the sink t. 
 f(s, v1)+f(v2, v1)=11+1=12
 f(v1, v3)=12 
 Flow conversation is satisfied. 
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factory warehouse

Products cannot be accumulated 
at intermediate cities, i.e., no 
warehouses at intermediate cities.



Maximum-flow problem 
• Consider the source s. 
• The value of flow f, denoted as |f|, is defined as

 Total flow out of the source minus the flow into the source. 
 Typically, a flow network will not have any edges into the source, 

and the flow into the source will be zero.  

• Maximum-flow problem:
 Given a flow network G with source s and sink t, we wish to find a 

flow of maximum value. 
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Anti-parallel edges
• To simplify the discussion, we do not allow both (u, v) and 

(v, u) together in the graph.
 If E contains an edge (u, v), then there is no edge (v, u) in the 

reverse direction.
• Easy to eliminate such antiparallel edges by introducing 

artificial vertices.

 Antiparallel edges: (v1, v2) and (v2, v1)
 Choose one of the two antiparallel edges, e.g., (v1, v2), split it by 

adding a new vertex v’, and replace (v1, v2) by (v1, v’) and (v’, v2). 
 Set the capacity of the two new edges to the capactity of the 

original edge. 
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Multiple sources and multiple sinks
• Example: multiple factories and multiple warehouses. 
• Introducing a super-source s and super-sink t. 

 Connect s to each of the original source si and set its capacity to ∞. 
 Connect t to each of the original sink ti and set its capacity to ∞. 

9



Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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The Ford-Fulkerson method
• A method, but not an algorithm

 It encompasses several implementations with different running 
times.

• The Ford-Fulkerson method is based on 
 Residual networks
 Augmenting paths
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Residual networks
• Given a flow network G and a flow f, the residual network 

Gf consists of edges whose residual capacities are 
greater than 0.
 Formally, Gf=(V, Ef), where Ef={(u, v) ∈ V×V: cf(u, v)>0}.

• Residual capacities: 

 The amount of additional flow that can be allowed on edge (u, v).
 The amount of flow that can be allowed on edge (v, u), i.e., the 

amount of flow that can be canceled on the opposite direction of 
edge (u, v). 
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Example

 cf(s, v1)=c(s, v1)-f(s, v1)=16-11=5      
 cf(v1, s)=f(s, v1)=11
 cf(v1, v3)=c(v1, v3)-f(v1, v3)=12-12=0. Thus, edge (v1, v3) is not in Gf.
 cf(v3, v1)=f(v1, v3)=12.
 …
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The edges in the residual 
network Gf are either edges in E 
or their reversals:
|Ef| ≤ 2|E|

Flow on a flow network Residual network



Augmenting paths
• Given a flow network G and a flow f, an augmenting path 

p is a simple path from s to t in the residual network Gf. 

 p=<s, v2, v3, t>
• Residual capacity of an augmenting path p: 

 How much additional flow can we send through an augmenting 
path?

 cf(p)=min{cf(u, v): (u, v) is on path p}
 cf(p)=min{5, 4, 5}=4
 The edge with the minimum capacity in p is called critical edge. 

 (v2, v3) is the critical edge of p.
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Augmenting a flow
• Given an augmenting path p, we define a flow fp on the 

residual network Gf. 

 The flow value of |fp|=cf(p)>0.
• If f is a flow in G and fp is a flow in the corresponding 

residual network Gf, we define f↑ fp, the augmentation of 
flow f by fp, to be a function from V×V to R.
 f↑ fp(u, v)=

 f(u, v) + fp(u, v)-fp(v, u) if (u, v)∈ E,
 0        otherwise.

• f↑fp is also a flow in G with value |f↑ fp | = |f| +| fp | > |f|. 
 By augmenting a flow by the flow of an augmenting path, we get a 

new flow with greater flow value. 
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Examples
• Original flow f, with flow value            

|f| =11+8=19

• Augmenting path p on the residual 
network. Flow fp based on the 
augmenting path is with flow value 4.
 fp(s, v2)= fp(v2, v3)= fp(v3, t)=4
 |fp| = 4

• Augment f by fp
 f↑ fp(s, v2)=8+4-0=12
 f↑ fp(v3, v2)=4+0-4=0
 f↑ fp(v3, t)=15+4-0=19

• New flow value: |f↑ fp | =11+12=23
• |f| +| fp | = 19+4=23 16

4/5
4/4

4/5

f↑ fp(u, v)= f(u, v) + fp(u, v)-fp(v, u) 



The Ford-Fulkerson method

• 1. Find an augmenting path in the residual network.
• 2. Augment the existing flow by the flow of the augmenting path.
• 3. Keep doing this until no augmenting path exists in the residual 

network. 

• The algorithms based on this method differ in how they choose p in 
line 3.

• Correctness is provided by the Max-flow min-cut theorem. 18

Initialize a flow with flow value 0.

Get critical edge and residual capacity

Augment the existing flow by the flow 
of the augmenting path

f↑ fp(u, v)= f(u, v) + fp(u, v)-fp(v, u) 



Example
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Residual network New Flow
cf(p)=4

cf(p)=4

cf(p)=4



Example 2
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cf(p)=7

cf(p)=4

No augmenting path anymore

Residual network New Flow

Maximum flow: 12+11=23

2

2

11
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Correctness of Ford-Fulkerson
• Why this method is correct? 
• How do we know that when the method terminates, i.e., 

when there are no more augmenting paths, we have 
actually find a maximum flow?

• Max-flow min-cut theorem
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• A cut is a partition of V into S and T=V-S, such that s ∈ S
and t ∈ T. 

• The net flow f(S, T) across the cut (S, T) is defined as

 The flow going from S to T minus the flow going from T to S. 
• The capacity c(S, T) of the cut (S, T) is defined as

 The sum of the capacities of edges going from S to T. 

Cuts
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Black/White vertices are in S/T. 
f(S, T)=f(v1, v3)+f(v2, v4)-f(v3, v2)

=12 + 11 – 4 =19.
c(S, T)=c(v1, v3)+c(v2, v4)

=12+14=26.



Minimum cut
• Minimum cut

 A cut whose capacity is minimum over all cuts of the network. 
• Given a flow f in G, for any cut (S, T) on G, we have that 

the net flow across (S, T) is same with the value of the 
flow, i.e., |f|. 
 |f|=f(S, T)

• The value of any flow f in G is bounded by the capacity of 
any cut of G. 
 |f|≤C(S, T)

• The maximum flow is bounded by the capacity of the 
minimum cut. 
 We cannot deliver more than the bottleneck allows.
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f(S, T)=|f|=19
c(S, T)=12+14=26



Max-flow min-cut theorem
• If f is a flow in G, the following conditions are equivalent:

 1. f is a maximum flow;
 2. The residual network Gf contains no augmenting paths. 
 3. |f|=c(S, T) for some cut (S, T) of G. 

• The correctness of Ford-Fulkerson method. 
 2→1
 We prove 2 → 3 and then 3 → 1 
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2 → 3
 2. The residual network Gf contains no augmenting paths. 
 3. |f|=c(S, T) for some cut (S, T) of G. 

 Let S includes vertices that are reachable from s, and T includes the 
remaining vertices. 
 S={s, v1, v2, v4}, T={t, v3}

 Consider vertex u that belongs to S and vertex v that belongs T 
 Case 1:

 If (u, v) is an edge in G, we must have f(u, v) = c(u, v). E.g., (v1, v3).
 Otherwise, (u, v) should appear in Gf and thus make v belong to S. 

 Case 2:
 If (v, u) is an edge in G, we must have f(v, u)=0. E.g., (v3, v2).
 Otherwise, (u, v) should appear in Gf and thus make v belong to S. 
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Residual network Gf
Corresponding flow f on network G



2 → 3
 2. The residual network Gf contains no augmenting paths. 
 3. |f|=c(S, T) for some cut (S, T) of G. 

 |f|=

27

Residual network Gf Corresponding flow f on network G

Case 2Case 1

A flow equals to the net flow of any cut.



3 → 1
 3. |f|=c(S, T) for some cut (S, T) of G. 
 1. f is a maximum flow;

• We know that |f|≤c(S, T) for all cuts (S, T)
 We cannot deliver more than the bottleneck allows.
 When |f|=c(S, T), this means |f| is a maximum flow.

 If there exists an even larger flow value |f’| > |f|, then |f’| is also larger 
than c(S, T), which contradicts that all flows should be no larger than 
the capacity of any cut. 
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Worst-case running time

32

Initialize a flow with flow value 0.
θ(E)

The inner loop:
Find an augmenting path p and 
augment current flow by the flow of the 
augmenting path.
O(E) Outer loop: assume that the while loop 

iterates x times.

In total, we have O(xE)



Worst-case running time
• Assume integer flows: capacities are integer values. 

 Appropriate scaling transformation can transfer rational numbers to 
integral numbers. 

• Each augmentation increases the value of the flow by 
some positive amount.
 Worst case: each time the flow value increases by 1. 

 s, u, v, t
 s, v, u, t
 s, u, v, t
 …. 33



Worst-case running time
• Identifying the augmenting path and augmentation can be 

done in O(E). 
• Total worst-case running time O(E |f* |), where f* is the 

max-flow found by the algorithm.
• Lessons learned: how an augmenting path is chosen is 

very important!   
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Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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The Edmonds-Karp algorithm
• In line 3 of Ford-Fulkerson method, the Edmonds-Karp 

regards the residual network as an un-weighted graph and 
finds the shortest path as an augmenting path. 
 Finding the shortest path in an un-weighted graph is done by 

calling breath first search (BFS) from source vertex s. 
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BFS
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Initialize all vertices: Θ(|V|)

Insert s to a queue Q.
Constant time Each vertex is enqueued and 

dequeued at most once 
(only when it is white).
Assume de-(en-)queue is 
O(1), then in total O(|V|).

For each vertex a, the for 
loop executes |a.adjacent()| 
times.

In total, O(|E|+|V|)=O(|E|)
Due to a connected graph. 

∑𝑎𝑎∈𝑉𝑉 𝑎𝑎.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎() = |E|



Example
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v1
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v3

v2 v4

t
16
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13

4 9

14

7
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v1

s

v3

v2

t

Shortest path:
p=<s, v1, v3, t>
Cf(p)=12

The original flow network and residual network
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Shortest path:
p=<s, v2, v4, t>
Cf(p)=4
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Shortest path:
p=<s, v2, v4, v3, t>
Cf(p)=79

4
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v1

s

v2

No path is able to connect
s and t anymore.

Maximum-flow: 12+11=23 

2

11

v4



Non-decreasing shortest paths
• Consider a vertex v that is not the source and the sink, i.e., 

where v∈V-{s, t}.
• The shortest-path distance δf(s, v) in the residual network 

does not decrease. 
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Non-decreasing shortest paths
• Why δf(s, v) never decreases? 

 For a new residual network, we may add or delete edges from the 
previous residual network.

 Deleting edges only increases the length of the shortest path δf(s, 
v).

 Adding edges may decrease the length of the shortest path δf(s, v).
 Only when adding “shortcuts”
 The edges added in a residual network are opposite to the direction of 

the shortest path, so they are never “shortcuts”. 
 Formal proof can be found in CLRS, Lemma 26.7, p 727. 
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Running time of Edmonds-Karp
• Each augmentation is O(|E|)

 BFS

• How many augmentations in total can we have?
 Each augmenting path has at least one critical edge. 
 Each of the |E| edges can become critical at most |V|/2 times. 

 P 729, CLRS Theorem 26.8
 Thus, in total O(|E||V|) times of augmentations. 

• Thus, in total O(|V||E|2)
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Running time of Edmonds-Karp
• An edge can be a critical edge at most |V|/2 times

 Consider an edge (u, v) in a residual network Gf. 
 And assume that (u, v) is the critical edge on an augmenting path.

 We have δf(s, v) = δf(s, u) + 1 
 After the augmentation, (u, v) disappears from the current residual 

network Gf.
 (u, v) may reappear in a new residual network again after (v, u) is 

on an augmenting path in Gf’
 We have δf’(s, u) = δf’(s, v) + 1 

 Due to the non-decreasing shortest path property we just saw
 δf(s, v) ≤ δf’(s, v)
 δf’(s, u) = δf’(s, v) + 1 
 ≥ δf(s, v) + 1
 = δf(s, u) + 2 
 The distance from source s to u increases by at least 2.

 The longest possible distance from s to u is |V|-2
 An edge can be a critical edge for at most (|V|-2)/2 times. 45



Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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Maximum-bipartite-matching
• A bipartite graph is an undirected graph G=(V, E)

 Vertex set V can be partitioned into L and R, where L and R are 
disjoint and V= L∪R.  

 All edges in E go between L and R. For each (u, v)∈E, we have 
u∈L and v∈R or u∈R and v∈L.

• Given an undirected graph G=(V, E), a matching is a 
subset of edges M ⊆E such that for each vertex v ∈ V, at 
most one edge of M is incident on v. 

• Maximum matching is a matching of maximum 
cardinality. 
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Finding a maximum bipartite matching
• Create a source vertex s and a sink vertex t. 
• Create an edge from s to every vertex in L.
• Create an edge from every vertex in R to t. 
• Assign each edge with capacity 1. 
• Identify the maximum flow. 
• Those edges from L to R whose flow is 1 constitutes the 

maximum matching. 
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Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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Spatial Crowdsourcing 
• Crowdsourcing

 Tasks and workers
 Amazon’s Mechanical Turk

• Spatial crowdsourcing
 Each task has an associated location
 A worker can only solve tasks that are close to them
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Maximum Task Assignment Problem
• Workers W ={w1, w2, w3}
• Tasks T = 

{t1,t2,t3,t4,t5,t6,t7,t8,t9,t10}
• Assignment instance 

si=<w,t>
• Worker has constraints 

to satisfy:
 Spatial Range Ri

 Maximum tasks maxTi



Reducing to Maximum Flow Problem
• Flow network graph 

G=(V,E), where:
 V contains |wi|+|ti|+2 

vertices
 E contains |wi|+|ti|+m edges

• Edges between workers 
and tasks are added if the 
tasks lie in the spatial 
regions of workers

• Every task can be 
assigned to only one 
worker.

Maximum tasks 
maxTi



ILO of Lecture 3
• Flow network 

 to understand the formalization of flow networks and flows; and the 
definition of the maximum-flow problem. 

 to understand the Ford-Fulkerson method for finding maximum 
flows. 

 to understand the Edmonds-Karp algorithm and to be able to 
analyze its worst-case running time;

 to be able to apply the Ford and Fulkerson method to solve the 
maximum-bipartite-matching problem.
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Lecture 4
• Greedy Algorithms

 to understand the principles of the greedy algorithm design 
technique;

 to understand the greedy algorithms for activity selection and 
Huffman coding, to be able to prove that these algorithms find 
optimal solutions;

 to be able to apply the greedy algorithm design technique.
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