
Lecture 3
Flow Networks

and
Maximum Flow

Bin Yang
byang@cs.aau.dk

Advanced Algorithms

ILO of Lecture 3
• Flow network and maximum flow

 to understand the formalization of flow networks and flows; and the
definition of the maximum-flow problem.

 to understand the Ford-Fulkerson method for finding maximum
flows.

 to understand the Edmonds-Karp algorithm and to be able to
analyze its worst-case running time;

 to be able to apply the Ford-Fulkerson method to solve the
maximum-bipartite-matching problem.

2

Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm
• Maximum-bipartite-matching
• Spatial crowd sourcing

3

Flow networks
• What if the weights in a weighted graph represent

maximum capacities of some flow of material?
 Capacity: a maximum rate at which the material can flow through.
 Pipe network to transport fluid (e.g., water, oil)

 Edges – pipes
 Vertices – junctions of pipes

 Data communication network
 Edges – network connections of different capacities
 Vertices – routers (do not produce or consume data just move data)

• Concepts (informally):
 Source vertex s (where material is produced).
 Sink vertex t (where material is consumed).
 For all other vertices – what goes in must go out.
 Goal: maximum rate of material flow from source to sink.

4

Formalization
• A flow network G= (V, E) is a directed graph.

 Each edge (u, v)∈ E has a nonnegative capacity c (u, v) ≥ 0
 If (u, v) is not in E, then c(u, v)=0.
 If E contains an edge (u, v), then there is no edge (v, u) in the

reverse direction.
 Two special vertices: a source s and a sink t.
 For any other vertex v, there is a path s →v→t .

• A flow in G is a real-valued function f: V×V →R.
 Capacity constraint: for all u, v ∈ V, 0≤ f(u, v) ≤ c(u, v).

 Flow from one vertex to another must be nonnegative and must not
exceed the given capacity.

 Flow conversation: for all u ∈ V-{s, t},

 Total flow into a vertex other than the source and the sink (i.e., vertex
u) must equal to the total flow out of that vertex.

5

Flow in equals flow out.

Examples

 Left figure: capacity
 Right figure: flow/capacity, if flow=0, we only denote capacity.

• Edge (s, v1)
 f(s, v1)=11 < c(s, v1)=16
 Capacity constraint is satisfied.

• V1, which is not the source s and not the sink t.
 f(s, v1)+f(v2, v1)=11+1=12
 f(v1, v3)=12
 Flow conversation is satisfied.

6

factory warehouse

Products cannot be accumulated
at intermediate cities, i.e., no
warehouses at intermediate cities.

Maximum-flow problem
• Consider the source s.
• The value of flow f, denoted as |f|, is defined as

 Total flow out of the source minus the flow into the source.
 Typically, a flow network will not have any edges into the source,

and the flow into the source will be zero.

• Maximum-flow problem:
 Given a flow network G with source s and sink t, we wish to find a

flow of maximum value.

7

0

Anti-parallel edges
• To simplify the discussion, we do not allow both (u, v) and

(v, u) together in the graph.
 If E contains an edge (u, v), then there is no edge (v, u) in the

reverse direction.
• Easy to eliminate such antiparallel edges by introducing

artificial vertices.

 Antiparallel edges: (v1, v2) and (v2, v1)
 Choose one of the two antiparallel edges, e.g., (v1, v2), split it by

adding a new vertex v’, and replace (v1, v2) by (v1, v’) and (v’, v2).
 Set the capacity of the two new edges to the capactity of the

original edge.
8

Multiple sources and multiple sinks
• Example: multiple factories and multiple warehouses.
• Introducing a super-source s and super-sink t.

 Connect s to each of the original source si and set its capacity to ∞.
 Connect t to each of the original sink ti and set its capacity to ∞.

9

Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm
• Maximum-bipartite-matching
• Spatial crowd sourcing

10

The Ford-Fulkerson method
• A method, but not an algorithm

 It encompasses several implementations with different running
times.

• The Ford-Fulkerson method is based on
 Residual networks
 Augmenting paths

11

Residual networks
• Given a flow network G and a flow f, the residual network

Gf consists of edges whose residual capacities are
greater than 0.
 Formally, Gf=(V, Ef), where Ef={(u, v) ∈ V×V: cf(u, v)>0}.

• Residual capacities:

 The amount of additional flow that can be allowed on edge (u, v).
 The amount of flow that can be allowed on edge (v, u), i.e., the

amount of flow that can be canceled on the opposite direction of
edge (u, v).

12

Example

 cf(s, v1)=c(s, v1)-f(s, v1)=16-11=5
 cf(v1, s)=f(s, v1)=11
 cf(v1, v3)=c(v1, v3)-f(v1, v3)=12-12=0. Thus, edge (v1, v3) is not in Gf.
 cf(v3, v1)=f(v1, v3)=12.
 …

13

The edges in the residual
network Gf are either edges in E
or their reversals:
|Ef| ≤ 2|E|

Flow on a flow network Residual network

Augmenting paths
• Given a flow network G and a flow f, an augmenting path

p is a simple path from s to t in the residual network Gf.

 p=<s, v2, v3, t>
• Residual capacity of an augmenting path p:

 How much additional flow can we send through an augmenting
path?

 cf(p)=min{cf(u, v): (u, v) is on path p}
 cf(p)=min{5, 4, 5}=4
 The edge with the minimum capacity in p is called critical edge.

 (v2, v3) is the critical edge of p.
14

Augmenting a flow
• Given an augmenting path p, we define a flow fp on the

residual network Gf.

 The flow value of |fp|=cf(p)>0.
• If f is a flow in G and fp is a flow in the corresponding

residual network Gf, we define f↑ fp, the augmentation of
flow f by fp, to be a function from V×V to R.
 f↑ fp(u, v)=

 f(u, v) + fp(u, v)-fp(v, u) if (u, v)∈ E,
 0 otherwise.

• f↑fp is also a flow in G with value |f↑ fp | = |f| +| fp | > |f|.
 By augmenting a flow by the flow of an augmenting path, we get a

new flow with greater flow value.
15

Examples
• Original flow f, with flow value

|f| =11+8=19

• Augmenting path p on the residual
network. Flow fp based on the
augmenting path is with flow value 4.
 fp(s, v2)= fp(v2, v3)= fp(v3, t)=4
 |fp| = 4

• Augment f by fp
 f↑ fp(s, v2)=8+4-0=12
 f↑ fp(v3, v2)=4+0-4=0
 f↑ fp(v3, t)=15+4-0=19

• New flow value: |f↑ fp | =11+12=23
• |f| +| fp | = 19+4=23 16

4/5
4/4

4/5

f↑ fp(u, v)= f(u, v) + fp(u, v)-fp(v, u)

The Ford-Fulkerson method

• 1. Find an augmenting path in the residual network.
• 2. Augment the existing flow by the flow of the augmenting path.
• 3. Keep doing this until no augmenting path exists in the residual

network.

• The algorithms based on this method differ in how they choose p in
line 3.

• Correctness is provided by the Max-flow min-cut theorem. 18

Initialize a flow with flow value 0.

Get critical edge and residual capacity

Augment the existing flow by the flow
of the augmenting path

f↑ fp(u, v)= f(u, v) + fp(u, v)-fp(v, u)

Example

19

Residual network New Flow
cf(p)=4

cf(p)=4

cf(p)=4

Example 2

20

cf(p)=7

cf(p)=4

No augmenting path anymore

Residual network New Flow

Maximum flow: 12+11=23

2

2

11

11

Correctness of Ford-Fulkerson
• Why this method is correct?
• How do we know that when the method terminates, i.e.,

when there are no more augmenting paths, we have
actually find a maximum flow?

• Max-flow min-cut theorem

21

• A cut is a partition of V into S and T=V-S, such that s ∈ S
and t ∈ T.

• The net flow f(S, T) across the cut (S, T) is defined as

 The flow going from S to T minus the flow going from T to S.
• The capacity c(S, T) of the cut (S, T) is defined as

 The sum of the capacities of edges going from S to T.

Cuts

22

Black/White vertices are in S/T.
f(S, T)=f(v1, v3)+f(v2, v4)-f(v3, v2)

=12 + 11 – 4 =19.
c(S, T)=c(v1, v3)+c(v2, v4)

=12+14=26.

Minimum cut
• Minimum cut

 A cut whose capacity is minimum over all cuts of the network.
• Given a flow f in G, for any cut (S, T) on G, we have that

the net flow across (S, T) is same with the value of the
flow, i.e., |f|.
 |f|=f(S, T)

• The value of any flow f in G is bounded by the capacity of
any cut of G.
 |f|≤C(S, T)

• The maximum flow is bounded by the capacity of the
minimum cut.
 We cannot deliver more than the bottleneck allows.

23

f(S, T)=|f|=19
c(S, T)=12+14=26

Max-flow min-cut theorem
• If f is a flow in G, the following conditions are equivalent:

 1. f is a maximum flow;
 2. The residual network Gf contains no augmenting paths.
 3. |f|=c(S, T) for some cut (S, T) of G.

• The correctness of Ford-Fulkerson method.
 2→1
 We prove 2 → 3 and then 3 → 1

25

2 → 3
 2. The residual network Gf contains no augmenting paths.
 3. |f|=c(S, T) for some cut (S, T) of G.

 Let S includes vertices that are reachable from s, and T includes the
remaining vertices.
 S={s, v1, v2, v4}, T={t, v3}

 Consider vertex u that belongs to S and vertex v that belongs T
 Case 1:

 If (u, v) is an edge in G, we must have f(u, v) = c(u, v). E.g., (v1, v3).
 Otherwise, (u, v) should appear in Gf and thus make v belong to S.

 Case 2:
 If (v, u) is an edge in G, we must have f(v, u)=0. E.g., (v3, v2).
 Otherwise, (u, v) should appear in Gf and thus make v belong to S.

26

Residual network Gf
Corresponding flow f on network G

2 → 3
 2. The residual network Gf contains no augmenting paths.
 3. |f|=c(S, T) for some cut (S, T) of G.

 |f|=

27

Residual network Gf Corresponding flow f on network G

Case 2Case 1

A flow equals to the net flow of any cut.

3 → 1
 3. |f|=c(S, T) for some cut (S, T) of G.
 1. f is a maximum flow;

• We know that |f|≤c(S, T) for all cuts (S, T)
 We cannot deliver more than the bottleneck allows.
 When |f|=c(S, T), this means |f| is a maximum flow.

 If there exists an even larger flow value |f’| > |f|, then |f’| is also larger
than c(S, T), which contradicts that all flows should be no larger than
the capacity of any cut.

28

Worst-case running time

32

Initialize a flow with flow value 0.
θ(E)

The inner loop:
Find an augmenting path p and
augment current flow by the flow of the
augmenting path.
O(E) Outer loop: assume that the while loop

iterates x times.

In total, we have O(xE)

Worst-case running time
• Assume integer flows: capacities are integer values.

 Appropriate scaling transformation can transfer rational numbers to
integral numbers.

• Each augmentation increases the value of the flow by
some positive amount.
 Worst case: each time the flow value increases by 1.

 s, u, v, t
 s, v, u, t
 s, u, v, t
 …. 33

Worst-case running time
• Identifying the augmenting path and augmentation can be

done in O(E).
• Total worst-case running time O(E |f* |), where f* is the

max-flow found by the algorithm.
• Lessons learned: how an augmenting path is chosen is

very important!

34

Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm
• Maximum-bipartite-matching
• Spatial crowd sourcing

35

The Edmonds-Karp algorithm
• In line 3 of Ford-Fulkerson method, the Edmonds-Karp

regards the residual network as an un-weighted graph and
finds the shortest path as an augmenting path.
 Finding the shortest path in an un-weighted graph is done by

calling breath first search (BFS) from source vertex s.

36

BFS

37

Initialize all vertices: Θ(|V|)

Insert s to a queue Q.
Constant time Each vertex is enqueued and

dequeued at most once
(only when it is white).
Assume de-(en-)queue is
O(1), then in total O(|V|).

For each vertex a, the for
loop executes |a.adjacent()|
times.

In total, O(|E|+|V|)=O(|E|)
Due to a connected graph.

∑𝑎𝑎∈𝑉𝑉 𝑎𝑎.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎() = |E|

Example

38

v1

s

v3

v2 v4

t
16

12 20

13

4 9

14

7

4

v1

s

v3

v2

t

Shortest path:
p=<s, v1, v3, t>
Cf(p)=12

The original flow network and residual network

39

v1

s

v3

v2 v4

t
4

12

12

13

4 9

14

7

4

12

8

v1

s

v3

v2 v4

t

12/16
12/12 12/20

13

4 9

14

7

4

Shortest path: p=<s, v1, v3, t>, Cf(p)=12

v1

s

v3

v2

t

Shortest path:
p=<s, v2, v4, t>
Cf(p)=4

40

v1

s

v3

v2 v4

t
4

12

12

4

4 9

10

7

4

12

8

v1

s

v3

v2 v4

t

12/16
12/12 12/20

4/13

4 9

4/14

7

4/4

Shortest path: p=< s, v2, v4, t >, Cf(p)=4

v1

s

v3

v2

t

Shortest path:
p=<s, v2, v4, v3, t>
Cf(p)=79

4

41

v1

s

v3

v2 v4

t
4

12

19

11

4 9

3

7

4

12

1

v1

s

v3

v2 v4

t

12/16
12/12 19/20

11/13

4 9

11/14

7/7

4/4

Shortest path: p=< s, v2, v4, v3, t >, Cf(p)=7

v1

s

v2

No path is able to connect
s and t anymore.

Maximum-flow: 12+11=23

2

11

v4

Non-decreasing shortest paths
• Consider a vertex v that is not the source and the sink, i.e.,

where v∈V-{s, t}.
• The shortest-path distance δf(s, v) in the residual network

does not decrease.

42

v1

s

v3

2

v2

t

v1

s

v3

3

v2

t

v1

s

v3
3

v2

t

v1

s

v2

v3
∞

Non-decreasing shortest paths
• Why δf(s, v) never decreases?

 For a new residual network, we may add or delete edges from the
previous residual network.

 Deleting edges only increases the length of the shortest path δf(s,
v).

 Adding edges may decrease the length of the shortest path δf(s, v).
 Only when adding “shortcuts”
 The edges added in a residual network are opposite to the direction of

the shortest path, so they are never “shortcuts”.
 Formal proof can be found in CLRS, Lemma 26.7, p 727.

43

Running time of Edmonds-Karp
• Each augmentation is O(|E|)

 BFS

• How many augmentations in total can we have?
 Each augmenting path has at least one critical edge.
 Each of the |E| edges can become critical at most |V|/2 times.

 P 729, CLRS Theorem 26.8
 Thus, in total O(|E||V|) times of augmentations.

• Thus, in total O(|V||E|2)

44

Running time of Edmonds-Karp
• An edge can be a critical edge at most |V|/2 times

 Consider an edge (u, v) in a residual network Gf.
 And assume that (u, v) is the critical edge on an augmenting path.

 We have δf(s, v) = δf(s, u) + 1
 After the augmentation, (u, v) disappears from the current residual

network Gf.
 (u, v) may reappear in a new residual network again after (v, u) is

on an augmenting path in Gf’
 We have δf’(s, u) = δf’(s, v) + 1

 Due to the non-decreasing shortest path property we just saw
 δf(s, v) ≤ δf’(s, v)
 δf’(s, u) = δf’(s, v) + 1
 ≥ δf(s, v) + 1
 = δf(s, u) + 2
 The distance from source s to u increases by at least 2.

 The longest possible distance from s to u is |V|-2
 An edge can be a critical edge for at most (|V|-2)/2 times. 45

Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm
• Maximum-bipartite-matching
• Spatial crowd sourcing

46

Maximum-bipartite-matching
• A bipartite graph is an undirected graph G=(V, E)

 Vertex set V can be partitioned into L and R, where L and R are
disjoint and V= L∪R.

 All edges in E go between L and R. For each (u, v)∈E, we have
u∈L and v∈R or u∈R and v∈L.

• Given an undirected graph G=(V, E), a matching is a
subset of edges M ⊆E such that for each vertex v ∈ V, at
most one edge of M is incident on v.

• Maximum matching is a matching of maximum
cardinality.

47

Finding a maximum bipartite matching
• Create a source vertex s and a sink vertex t.
• Create an edge from s to every vertex in L.
• Create an edge from every vertex in R to t.
• Assign each edge with capacity 1.
• Identify the maximum flow.
• Those edges from L to R whose flow is 1 constitutes the

maximum matching.

48

Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm
• Maximum-bipartite-matching
• Spatial crowd sourcing

49

Spatial Crowdsourcing
• Crowdsourcing

 Tasks and workers
 Amazon’s Mechanical Turk

• Spatial crowdsourcing
 Each task has an associated location
 A worker can only solve tasks that are close to them

50

Maximum Task Assignment Problem
• Workers W ={w1, w2, w3}
• Tasks T =

{t1,t2,t3,t4,t5,t6,t7,t8,t9,t10}
• Assignment instance

si=<w,t>
• Worker has constraints

to satisfy:
 Spatial Range Ri

 Maximum tasks maxTi

Reducing to Maximum Flow Problem
• Flow network graph

G=(V,E), where:
 V contains |wi|+|ti|+2

vertices
 E contains |wi|+|ti|+m edges

• Edges between workers
and tasks are added if the
tasks lie in the spatial
regions of workers

• Every task can be
assigned to only one
worker.

Maximum tasks
maxTi

ILO of Lecture 3
• Flow network

 to understand the formalization of flow networks and flows; and the
definition of the maximum-flow problem.

 to understand the Ford-Fulkerson method for finding maximum
flows.

 to understand the Edmonds-Karp algorithm and to be able to
analyze its worst-case running time;

 to be able to apply the Ford and Fulkerson method to solve the
maximum-bipartite-matching problem.

53

Lecture 4
• Greedy Algorithms

 to understand the principles of the greedy algorithm design
technique;

 to understand the greedy algorithms for activity selection and
Huffman coding, to be able to prove that these algorithms find
optimal solutions;

 to be able to apply the greedy algorithm design technique.

54

	Advanced Algorithms
	ILO of Lecture 3
	Agenda
	Flow networks
	Formalization
	Examples
	Maximum-flow problem
	Anti-parallel edges
	Multiple sources and multiple sinks
	Agenda
	The Ford-Fulkerson method
	Residual networks
	Example
	Augmenting paths
	Augmenting a flow
	Examples
	The Ford-Fulkerson method
	Example
	Example 2
	Correctness of Ford-Fulkerson
	Cuts
	Minimum cut
	Max-flow min-cut theorem
	2 → 3
	2 → 3
	3 → 1
	Worst-case running time
	Worst-case running time
	Worst-case running time
	Agenda
	The Edmonds-Karp algorithm
	BFS
	Example
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Non-decreasing shortest paths
	Non-decreasing shortest paths
	Running time of Edmonds-Karp
	Running time of Edmonds-Karp
	Agenda
	Maximum-bipartite-matching
	Finding a maximum bipartite matching
	Agenda
	Spatial Crowdsourcing
	Maximum Task Assignment Problem
	Reducing to Maximum Flow Problem
	ILO of Lecture 3
	Lecture 4

