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ILO of Lecture 3
• Flow network and maximum flow

 to understand the formalization of flow networks and flows; and the 
definition of the maximum-flow problem. 

 to understand the Ford-Fulkerson method for finding maximum 
flows. 

 to understand the Edmonds-Karp algorithm and to be able to 
analyze its worst-case running time;

 to be able to apply the Ford-Fulkerson method to solve the 
maximum-bipartite-matching problem.
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Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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Flow networks
• What if the weights in a weighted graph represent 

maximum capacities of some flow of material?
 Capacity: a maximum rate at which the material can flow through.
 Pipe network to transport fluid (e.g., water, oil)

 Edges – pipes
 Vertices – junctions of pipes

 Data communication network 
 Edges – network connections of different capacities
 Vertices – routers (do not produce or consume data just move data)

• Concepts (informally): 
 Source vertex s (where material is produced).
 Sink vertex t (where material is consumed).
 For all other vertices – what goes in must go out.
 Goal: maximum rate of material flow from source to sink.
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Formalization
• A flow network G= (V, E) is a directed graph. 

 Each edge (u, v)∈ E has a nonnegative capacity c (u, v) ≥ 0
 If (u, v) is not in E, then c(u, v)=0. 
 If E contains an edge (u, v), then there is no edge (v, u) in the 

reverse direction.
 Two special vertices: a source s and a sink t. 
 For any other vertex v, there is a path s →v→t .

• A flow in G is a real-valued function f: V×V →R. 
 Capacity constraint: for all u, v ∈ V, 0≤ f(u, v) ≤ c(u, v).

 Flow from one vertex to another must be nonnegative and must not 
exceed the given capacity.

 Flow conversation: for all u ∈ V-{s, t}, 

 Total flow into a vertex other than the source and the sink (i.e., vertex 
u) must equal to the total flow out of that vertex. 
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Flow in equals flow out.



Examples

 Left figure: capacity
 Right figure: flow/capacity, if flow=0, we only denote capacity. 

• Edge (s, v1)
 f(s, v1)=11 < c(s, v1)=16
 Capacity constraint is satisfied. 

• V1, which is not the source s and not the sink t. 
 f(s, v1)+f(v2, v1)=11+1=12
 f(v1, v3)=12 
 Flow conversation is satisfied. 
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factory warehouse

Products cannot be accumulated 
at intermediate cities, i.e., no 
warehouses at intermediate cities.



Maximum-flow problem 
• Consider the source s. 
• The value of flow f, denoted as |f|, is defined as

 Total flow out of the source minus the flow into the source. 
 Typically, a flow network will not have any edges into the source, 

and the flow into the source will be zero.  

• Maximum-flow problem:
 Given a flow network G with source s and sink t, we wish to find a 

flow of maximum value. 
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Anti-parallel edges
• To simplify the discussion, we do not allow both (u, v) and 

(v, u) together in the graph.
 If E contains an edge (u, v), then there is no edge (v, u) in the 

reverse direction.
• Easy to eliminate such antiparallel edges by introducing 

artificial vertices.

 Antiparallel edges: (v1, v2) and (v2, v1)
 Choose one of the two antiparallel edges, e.g., (v1, v2), split it by 

adding a new vertex v’, and replace (v1, v2) by (v1, v’) and (v’, v2). 
 Set the capacity of the two new edges to the capactity of the 

original edge. 
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Multiple sources and multiple sinks
• Example: multiple factories and multiple warehouses. 
• Introducing a super-source s and super-sink t. 

 Connect s to each of the original source si and set its capacity to ∞. 
 Connect t to each of the original sink ti and set its capacity to ∞. 
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Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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The Ford-Fulkerson method
• A method, but not an algorithm

 It encompasses several implementations with different running 
times.

• The Ford-Fulkerson method is based on 
 Residual networks
 Augmenting paths
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Residual networks
• Given a flow network G and a flow f, the residual network 

Gf consists of edges whose residual capacities are 
greater than 0.
 Formally, Gf=(V, Ef), where Ef={(u, v) ∈ V×V: cf(u, v)>0}.

• Residual capacities: 

 The amount of additional flow that can be allowed on edge (u, v).
 The amount of flow that can be allowed on edge (v, u), i.e., the 

amount of flow that can be canceled on the opposite direction of 
edge (u, v). 
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Example

 cf(s, v1)=c(s, v1)-f(s, v1)=16-11=5      
 cf(v1, s)=f(s, v1)=11
 cf(v1, v3)=c(v1, v3)-f(v1, v3)=12-12=0. Thus, edge (v1, v3) is not in Gf.
 cf(v3, v1)=f(v1, v3)=12.
 …
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The edges in the residual 
network Gf are either edges in E 
or their reversals:
|Ef| ≤ 2|E|

Flow on a flow network Residual network



Augmenting paths
• Given a flow network G and a flow f, an augmenting path 

p is a simple path from s to t in the residual network Gf. 

 p=<s, v2, v3, t>
• Residual capacity of an augmenting path p: 

 How much additional flow can we send through an augmenting 
path?

 cf(p)=min{cf(u, v): (u, v) is on path p}
 cf(p)=min{5, 4, 5}=4
 The edge with the minimum capacity in p is called critical edge. 

 (v2, v3) is the critical edge of p.
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Augmenting a flow
• Given an augmenting path p, we define a flow fp on the 

residual network Gf. 

 The flow value of |fp|=cf(p)>0.
• If f is a flow in G and fp is a flow in the corresponding 

residual network Gf, we define f↑ fp, the augmentation of 
flow f by fp, to be a function from V×V to R.
 f↑ fp(u, v)=

 f(u, v) + fp(u, v)-fp(v, u) if (u, v)∈ E,
 0        otherwise.

• f↑fp is also a flow in G with value |f↑ fp | = |f| +| fp | > |f|. 
 By augmenting a flow by the flow of an augmenting path, we get a 

new flow with greater flow value. 
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Examples
• Original flow f, with flow value            

|f| =11+8=19

• Augmenting path p on the residual 
network. Flow fp based on the 
augmenting path is with flow value 4.
 fp(s, v2)= fp(v2, v3)= fp(v3, t)=4
 |fp| = 4

• Augment f by fp
 f↑ fp(s, v2)=8+4-0=12
 f↑ fp(v3, v2)=4+0-4=0
 f↑ fp(v3, t)=15+4-0=19

• New flow value: |f↑ fp | =11+12=23
• |f| +| fp | = 19+4=23 16

4/5
4/4

4/5

f↑ fp(u, v)= f(u, v) + fp(u, v)-fp(v, u) 



The Ford-Fulkerson method

• 1. Find an augmenting path in the residual network.
• 2. Augment the existing flow by the flow of the augmenting path.
• 3. Keep doing this until no augmenting path exists in the residual 

network. 

• The algorithms based on this method differ in how they choose p in 
line 3.

• Correctness is provided by the Max-flow min-cut theorem. 18

Initialize a flow with flow value 0.

Get critical edge and residual capacity

Augment the existing flow by the flow 
of the augmenting path

f↑ fp(u, v)= f(u, v) + fp(u, v)-fp(v, u) 



Example
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Residual network New Flow
cf(p)=4

cf(p)=4

cf(p)=4



Example 2
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cf(p)=7

cf(p)=4

No augmenting path anymore

Residual network New Flow

Maximum flow: 12+11=23

2

2

11

11



Correctness of Ford-Fulkerson
• Why this method is correct? 
• How do we know that when the method terminates, i.e., 

when there are no more augmenting paths, we have 
actually find a maximum flow?

• Max-flow min-cut theorem
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• A cut is a partition of V into S and T=V-S, such that s ∈ S
and t ∈ T. 

• The net flow f(S, T) across the cut (S, T) is defined as

 The flow going from S to T minus the flow going from T to S. 
• The capacity c(S, T) of the cut (S, T) is defined as

 The sum of the capacities of edges going from S to T. 

Cuts
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Black/White vertices are in S/T. 
f(S, T)=f(v1, v3)+f(v2, v4)-f(v3, v2)

=12 + 11 – 4 =19.
c(S, T)=c(v1, v3)+c(v2, v4)

=12+14=26.



Minimum cut
• Minimum cut

 A cut whose capacity is minimum over all cuts of the network. 
• Given a flow f in G, for any cut (S, T) on G, we have that 

the net flow across (S, T) is same with the value of the 
flow, i.e., |f|. 
 |f|=f(S, T)

• The value of any flow f in G is bounded by the capacity of 
any cut of G. 
 |f|≤C(S, T)

• The maximum flow is bounded by the capacity of the 
minimum cut. 
 We cannot deliver more than the bottleneck allows.

23

f(S, T)=|f|=19
c(S, T)=12+14=26



Max-flow min-cut theorem
• If f is a flow in G, the following conditions are equivalent:

 1. f is a maximum flow;
 2. The residual network Gf contains no augmenting paths. 
 3. |f|=c(S, T) for some cut (S, T) of G. 

• The correctness of Ford-Fulkerson method. 
 2→1
 We prove 2 → 3 and then 3 → 1 
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2 → 3
 2. The residual network Gf contains no augmenting paths. 
 3. |f|=c(S, T) for some cut (S, T) of G. 

 Let S includes vertices that are reachable from s, and T includes the 
remaining vertices. 
 S={s, v1, v2, v4}, T={t, v3}

 Consider vertex u that belongs to S and vertex v that belongs T 
 Case 1:

 If (u, v) is an edge in G, we must have f(u, v) = c(u, v). E.g., (v1, v3).
 Otherwise, (u, v) should appear in Gf and thus make v belong to S. 

 Case 2:
 If (v, u) is an edge in G, we must have f(v, u)=0. E.g., (v3, v2).
 Otherwise, (u, v) should appear in Gf and thus make v belong to S. 

26

Residual network Gf
Corresponding flow f on network G



2 → 3
 2. The residual network Gf contains no augmenting paths. 
 3. |f|=c(S, T) for some cut (S, T) of G. 

 |f|=

27

Residual network Gf Corresponding flow f on network G

Case 2Case 1

A flow equals to the net flow of any cut.



3 → 1
 3. |f|=c(S, T) for some cut (S, T) of G. 
 1. f is a maximum flow;

• We know that |f|≤c(S, T) for all cuts (S, T)
 We cannot deliver more than the bottleneck allows.
 When |f|=c(S, T), this means |f| is a maximum flow.

 If there exists an even larger flow value |f’| > |f|, then |f’| is also larger 
than c(S, T), which contradicts that all flows should be no larger than 
the capacity of any cut. 
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Worst-case running time

32

Initialize a flow with flow value 0.
θ(E)

The inner loop:
Find an augmenting path p and 
augment current flow by the flow of the 
augmenting path.
O(E) Outer loop: assume that the while loop 

iterates x times.

In total, we have O(xE)



Worst-case running time
• Assume integer flows: capacities are integer values. 

 Appropriate scaling transformation can transfer rational numbers to 
integral numbers. 

• Each augmentation increases the value of the flow by 
some positive amount.
 Worst case: each time the flow value increases by 1. 

 s, u, v, t
 s, v, u, t
 s, u, v, t
 …. 33



Worst-case running time
• Identifying the augmenting path and augmentation can be 

done in O(E). 
• Total worst-case running time O(E |f* |), where f* is the 

max-flow found by the algorithm.
• Lessons learned: how an augmenting path is chosen is 

very important!   
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Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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The Edmonds-Karp algorithm
• In line 3 of Ford-Fulkerson method, the Edmonds-Karp 

regards the residual network as an un-weighted graph and 
finds the shortest path as an augmenting path. 
 Finding the shortest path in an un-weighted graph is done by 

calling breath first search (BFS) from source vertex s. 
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BFS
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Initialize all vertices: Θ(|V|)

Insert s to a queue Q.
Constant time Each vertex is enqueued and 

dequeued at most once 
(only when it is white).
Assume de-(en-)queue is 
O(1), then in total O(|V|).

For each vertex a, the for 
loop executes |a.adjacent()| 
times.

In total, O(|E|+|V|)=O(|E|)
Due to a connected graph. 

∑𝑎𝑎∈𝑉𝑉 𝑎𝑎.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎() = |E|



Example
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Shortest path:
p=<s, v1, v3, t>
Cf(p)=12

The original flow network and residual network
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No path is able to connect
s and t anymore.

Maximum-flow: 12+11=23 

2

11

v4



Non-decreasing shortest paths
• Consider a vertex v that is not the source and the sink, i.e., 

where v∈V-{s, t}.
• The shortest-path distance δf(s, v) in the residual network 

does not decrease. 
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Non-decreasing shortest paths
• Why δf(s, v) never decreases? 

 For a new residual network, we may add or delete edges from the 
previous residual network.

 Deleting edges only increases the length of the shortest path δf(s, 
v).

 Adding edges may decrease the length of the shortest path δf(s, v).
 Only when adding “shortcuts”
 The edges added in a residual network are opposite to the direction of 

the shortest path, so they are never “shortcuts”. 
 Formal proof can be found in CLRS, Lemma 26.7, p 727. 
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Running time of Edmonds-Karp
• Each augmentation is O(|E|)

 BFS

• How many augmentations in total can we have?
 Each augmenting path has at least one critical edge. 
 Each of the |E| edges can become critical at most |V|/2 times. 

 P 729, CLRS Theorem 26.8
 Thus, in total O(|E||V|) times of augmentations. 

• Thus, in total O(|V||E|2)
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Running time of Edmonds-Karp
• An edge can be a critical edge at most |V|/2 times

 Consider an edge (u, v) in a residual network Gf. 
 And assume that (u, v) is the critical edge on an augmenting path.

 We have δf(s, v) = δf(s, u) + 1 
 After the augmentation, (u, v) disappears from the current residual 

network Gf.
 (u, v) may reappear in a new residual network again after (v, u) is 

on an augmenting path in Gf’
 We have δf’(s, u) = δf’(s, v) + 1 

 Due to the non-decreasing shortest path property we just saw
 δf(s, v) ≤ δf’(s, v)
 δf’(s, u) = δf’(s, v) + 1 
 ≥ δf(s, v) + 1
 = δf(s, u) + 2 
 The distance from source s to u increases by at least 2.

 The longest possible distance from s to u is |V|-2
 An edge can be a critical edge for at most (|V|-2)/2 times. 45



Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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Maximum-bipartite-matching
• A bipartite graph is an undirected graph G=(V, E)

 Vertex set V can be partitioned into L and R, where L and R are 
disjoint and V= L∪R.  

 All edges in E go between L and R. For each (u, v)∈E, we have 
u∈L and v∈R or u∈R and v∈L.

• Given an undirected graph G=(V, E), a matching is a 
subset of edges M ⊆E such that for each vertex v ∈ V, at 
most one edge of M is incident on v. 

• Maximum matching is a matching of maximum 
cardinality. 

47



Finding a maximum bipartite matching
• Create a source vertex s and a sink vertex t. 
• Create an edge from s to every vertex in L.
• Create an edge from every vertex in R to t. 
• Assign each edge with capacity 1. 
• Identify the maximum flow. 
• Those edges from L to R whose flow is 1 constitutes the 

maximum matching. 
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Agenda
• Flow networks, flows, maximum-flow problem
• The Ford-Fulkerson method
• The Edmonds-Karp algorithm 
• Maximum-bipartite-matching
• Spatial crowd sourcing
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Spatial Crowdsourcing 
• Crowdsourcing

 Tasks and workers
 Amazon’s Mechanical Turk

• Spatial crowdsourcing
 Each task has an associated location
 A worker can only solve tasks that are close to them
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Maximum Task Assignment Problem
• Workers W ={w1, w2, w3}
• Tasks T = 

{t1,t2,t3,t4,t5,t6,t7,t8,t9,t10}
• Assignment instance 

si=<w,t>
• Worker has constraints 

to satisfy:
 Spatial Range Ri

 Maximum tasks maxTi



Reducing to Maximum Flow Problem
• Flow network graph 

G=(V,E), where:
 V contains |wi|+|ti|+2 

vertices
 E contains |wi|+|ti|+m edges

• Edges between workers 
and tasks are added if the 
tasks lie in the spatial 
regions of workers

• Every task can be 
assigned to only one 
worker.

Maximum tasks 
maxTi



ILO of Lecture 3
• Flow network 

 to understand the formalization of flow networks and flows; and the 
definition of the maximum-flow problem. 

 to understand the Ford-Fulkerson method for finding maximum 
flows. 

 to understand the Edmonds-Karp algorithm and to be able to 
analyze its worst-case running time;

 to be able to apply the Ford and Fulkerson method to solve the 
maximum-bipartite-matching problem.
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Lecture 4
• Greedy Algorithms

 to understand the principles of the greedy algorithm design 
technique;

 to understand the greedy algorithms for activity selection and 
Huffman coding, to be able to prove that these algorithms find 
optimal solutions;

 to be able to apply the greedy algorithm design technique.

54


	Advanced Algorithms
	ILO of Lecture 3
	Agenda
	Flow networks
	Formalization
	Examples
	Maximum-flow problem 
	Anti-parallel edges
	Multiple sources and multiple sinks
	Agenda
	The Ford-Fulkerson method
	Residual networks
	Example
	Augmenting paths
	Augmenting a flow
	Examples
	The Ford-Fulkerson method
	Example
	Example 2
	Correctness of Ford-Fulkerson
	Cuts
	Minimum cut
	Max-flow min-cut theorem
	2 → 3
	2 → 3
	3 → 1
	Worst-case running time
	Worst-case running time
	Worst-case running time
	Agenda
	The Edmonds-Karp algorithm
	BFS
	Example
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Non-decreasing shortest paths
	Non-decreasing shortest paths
	Running time of Edmonds-Karp
	Running time of Edmonds-Karp
	Agenda
	Maximum-bipartite-matching
	Finding a maximum bipartite matching
	Agenda
	Spatial Crowdsourcing 
	Maximum Task Assignment Problem
	Reducing to Maximum Flow Problem
	ILO of Lecture 3
	Lecture 4

