
Advanced Algorithms

Exam Assignments

Simonas Šaltenis

9 June 2015

Full name:

CPR-number:

E-mail
at student.aau.dk:

This exam consists of a set of multi-choice questions and an additional exercise. There
are four hours available. Mark your answers to the multi-choice questions on these pages.
Remember to put your name and your CPR number on any additional sheets of paper
you hand in.

• Read carefully the text of each exercise before solving it!

• For exercise 2, it is important that your solutions are presented in a readable form.
This will make it easier to understand your answers. In particular, you should
provide precise descriptions of your algorithms. Pseudo-code is strongly preferred.
It is also worth to write two or three lines describing informally what the algorithm
is supposed to do, as well as to justify your complexity analyses.

If not mentioned otherwise, the algorithms referred to in Exercise 1 are assumed to
be implemented as described in the main textbook of the course.

During the exam you are allowed to consult books and notes.

1



Exercise 1 [50 points]

1. (7 points) Consider the following undirected weighted graph.

2

1

3 4
2

25
1

4

How does the 4-th row of the distance matrix look after the first iteration (k = 1)
of the Floyd-Warshall algorithm?

a) 2, 7, 4, 0 b) 2, 6, 3, 0

c) 2, 7, 3, 0 d) 2,∞, 4, 0

2. (7 points) Consider the following flow network with some flow from s to t
(flow/capacity shown on edges):

ta c

b

2/2

1/31/3
1/2

2/4

s d3/3 1/3

1/1

What would be the augmenting path chosen by the Edmonds-Karp algorithm?

a) s, a, b, t b) s, b, t

c) s, a, b, d, t d) there is no augmenting path

3. (6 points) Consider the following three sets of points (the dotted lines just illustrate
the relative positions of points).

p
0

p
1

p
2p

3p
4

p
n

p
n-1

p
0

p
1

p
2

p
n

p
n-1

p
n-2

p
3

p
0

p
1

p
1

p
2p

2

p
3p

n-1

p
n-1

p
n

1) 2) 3)

2



Consider running Graham’s scan on each of the sets of points. The algorithm builds
the convex hull in a stack. What will be the maximum size of this stack during the
execution of the algorithm?

3.1. In Figure 1):

a) 3 b) n− 1 c) n d) n + 1

3.2. In Figure 2):

a) 3 b) n− 1 c) n d) n + 1

3.3. In Figure 3):

a) n + 1 b) 2n− 2 c) 2n− 1 d) 2n

4. (7 points) Consider a two-dimensional range tree storing 16 points.

4.1. What is the total number of all the leaves in the associated structures of all the
nodes on the second level below the root of the main tree?

a) 8 b) 16 c) 32 d) 64

4.2. Consider one path from the root to a leaf of the main tree. What is the total
number of all the leaves in the associated structures of the internal nodes on this
path?

a) 64 b) 32 c) 16 d) 30

4.3. Answer 4.2. if the range tree stores n points.

a) Θ(n) b) Θ(n2) c) Θ(
√
n) d) Θ(n lg n)

5. (7 points) Which of the four sets of vertices could be the result of running Approx-
Vertex-Cover on this graph?

db c

a e

a) a, d, b b) a, d

c) b, c, d, e d) a, c, e

3



6. (8 points) Consider the following set of points on the plane stored in a kd-tree.
Assume that for each internal node, the left subtree contains points with coordinates
(x or y) smaller or equal than the split value and the right subtree points with
coordinates strictly larger than the split value. Also assume that the root of the tree
splits on the x coordinate (horizontal).

a
b

c

d

e
f

g

h

0 1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

Which leaf nodes are accessed to process the range query shown in the figure?

a) d, h, f b) d, h

c) d, h, e d) d, h, b, e, f

7. (8 points) Consider a file of 10000 disk pages that has to be sorted. How many I/O
operations (reads or writes of disk pages) are performed by the multiway merge-sort
algorithm if 50 pages of main memory is available?

a) 20000 b) 40000 c) 60000 d) 70000

Exercise 2 [50 points]

Consider an array of numbers A[1 . . n]. We want to find a longest increasing subse-
quence in this array. Formally, we are looking for a longest sequence A[i1] < A[i2] <
· · · < A[ik], where 1 ≤ i1 < i2 < · · · < ik ≤ n.

For example, if A = [7, 4, 5, 2, 8, 3] then the longest increasing subsequence is
〈A[2], A[3], A[5]〉 = 〈4, 5, 8〉.

Note that solution to part 1 is not necessary to solve parts 2–4.

1. (15 points) Assume that A[n + 1] = ∞, which is larger than all the other
elements in the array. Write a multithreaded algorithm that, given an index
i (1 ≤ i ≤ n), finds the next element in A after i that is larger than A[i].

4



In other words, it should return min{j | j > i ∧ A[j] > A[i]}. Analyze the
work, span, and parallelism of your algorithm. Note that your algorithm may
on average do more work than a simple and efficient sequential algorithm, but
not more (asymptotically) in the worst case.

Assume a computer with unlimited physical threads. Which algorithm do you
expect to run faster—your multithreaded algorithm or an efficient sequential
one—if A[1 . . n] is sorted in the ascending order? What if A[1 . . n] is sorted in
the descending order (i.e., the algorithm returns n + 1, independently of i)?

2. (8 points) Consider the following greedy algorithm to find the length of a longest
increasing subsequence of A.

GreadyLIS(A[1 . . n])

1 L = 0
2 for i = 1 to n
3 l = 1
4 prev = i

// Greedily construct an increasing subsequence starting at i
5 for j = i + 1 to n
6 if A[j] > A[prev ]
7 l = l + 1
8 prev = j
9 L = max(L, l)

10 return L

What is the worst-case running time of this algorithm?

Construct an example array such that this algorithm does not return the correct
result. Explain what the correct result in your example should be and what the
algorithm returns.

3. (20 points) Write a dynamic-programming algorithm that finds the length of a
longest increasing subsequence of A. Analyze the worst-case running time and
space of your algorithm.

4. (7 points) Augment your algorithm so that, in addition to the length, it also
prints out a longest increasing subsequence. Do your modifications change the
asymptotic worst-case running time or space requirement of your algorithm?

5


