
Advanced Algorithms

(DAT6/SW6/DE8/MI8/IT8)

Exam Assignments

Bin Yang

10.00 - 13.00, 13 June 2017

Full name:

Student number:

E-mail
at student.aau.dk:

This exam consists of two exercises. Exercise 1 is a set of quizzes. Exercise 2 has a
few open questions. When answering the quizzes in Exercise 1, mark the check-boxes
or write down numbers, matrices, or sentences on these papers. When answering the
questions in Exercise 2, remember to put your name and your student number on any
additional sheets of paper you will need to use.

During the exam you are allowed to consult books, notes, and other written martials.
However, the use of any kind of electronic devices with communication functionalities,
e.g., laptops, tablets, and mobile phones, is NOT permitted.

• Read carefully the text of each exercise before solving it! Pay particular atten-
tions to the terms in bold.

• For Exercise 2, it is important that your solutions are presented in a readable
form. Make an effort to use a readable handwriting and to present your solutions
neatly.

1



Exercise 1 [50 points in total]

1. (8 points) We run Floyd-Warshall algorithm on the following graph.

Please write down the distance matrix after the second iteration, i.e., D(2).





2. Consider the following three different dynamic table expansion strategies. As-
sume that the dynamic table is initialized with 10 elements in the beginning.

1. When the table is full, we make a new table whose size is 2,000 more elements
bigger than the size of the old table.

2. When the table is full, assume that the table has N elements. We make a
new table whose size is dN

3
e more elements larger than the size of the old

table. For example, if the old table has 10 elements, the new table will
have d10

3
e = 4 more elements, i.e., 14 elements in total. If the old table

has 9 elements, the new table will also have d9
3
e = 3 more elements, i.e., 12

elements in total.

3. When the table is full, we make a new table whose size is 7 times of the size
of the old table.

2



Assume that we only insert elements into the dynamic table. And consider a
series of n insertions into the dynamic table. Please write down the amortized
complexity of an insertion operation when using the three different strategies,
respectively. Please use asymptotic notation.

2.1 (3 points) Strategy 1:

2.2 (3 points) Strategy 2:

2.3 (3 points) Strategy 3:

3. Consider the following 4 line segments shown in the following figure.

Let’s use the sweeping technique to check if there are line segments that intersect.
We consider two different sweeping techniques using two different sweeping lines.

3



3.1 (4 points) We first consider an imaginary vertical sweep line that passes from
the origin and keeps moving to the right according to the x-axis. Which point is
the event point where the sweeping algorithm identifies the intersection?

1) A 2) B 3) C 4) D

5) E 6) F 7) G 8) H

3.2 (4 points) Next, we consider an imaginary horizontal sweep line that passes
from the origin and keeps moving to the top according to the y-axis. Which point
is the event point where the sweeping algorithm identifies the intersection?

1) A 2) B 3) C 4) D

5) E 6) F 7) G 8) H

4. Let’s consider two dimensional (2D) range searches. Suppose that we have a
set of n 2D points that are uniformly spread in a 10 km × 10 km space.

We are given three different workloads, where each workload consists of 100
2D range searches.

• Workload 1: each range search has a range that covers 1
4

of the whole space.

• Workload 2: each range search has a range that covers 1
100

of the whole
space.

• Workload 3: each range search has a range that covers exactly 10 points
in the space.

Now, we consider three different methods to process the three different work-
loads of 2D range searches: using a 2D range tree, using a kd-tree, and using two
1D Binary search trees (BSTs). We assume all the trees have been created so that
you do not need to take into account the run time for constructing the trees.

4.1 (3 points) When processing the range searches in Workload 1, which method
is the asymptotically fastest?

1) Using a 2D range tree.

2) Using a kd-tree.

3) Using two 1D BSTs.

4) They have the same asymptotic time complexity.

4



4.2 (3 points) When processing the range searches in Workload 2, which method
is the asymptotically fastest?

1) Using a 2D range tree.

2) Using a kd-tree.

3) Using two 1D BSTs.

4) They have the same asymptotic time complexity.

4.3 (3 points) When processing the range searches in Workload 3, which method
is the asymptotically fastest?

1) Using a 2D range tree.

2) Using a kd-tree.

3) Using two 1D BSTs.

4) They have the same asymptotic time complexity.

5. Assume that we have a computer with a large hard disk and a disk page of the
hard disk is 1 GB (gigabyte). On the hard disk, there is a 1 TB (terabyte) file to
be sorted.

Further, we define an I/O operation as either a read or a write of a disk page.
Write down how many I/O operations are performed when using different external
memory merge-sort algorithms.

5.1 (3 points) When using a two-way merge-sort algorithm, and assuming that
the computer has 50 GB (gigabyte) main memory, this requires

I/O operations.

5.2 (3 points) When using a multiway merge-sort algorithm, and assuming that
the computer has 50 GB (gigabyte) main memory, this requires

I/O operations.

5.2 (3 points) When using a multiway merge-sort algorithm, and assuming that
the computer has 500 GB (gigabyte) main memory, this requires

I/O operations.

6. (7 points) Consider an approximation algorithm for solving a NP-complete
problem P . The approximation ratio of the approximation algorithm is 1.5. Which
of the following statements is/are correct?

5



1) If P is a maximization problem, and its optimal solution is 100, then, the
approximation algorithm may return a value 110.

2) If P is a maximization problem, and its optimal solution is 100, then, the
approximation algorithm may return a value 20.

3) If P is a minimization problem, and its optimal solution is 100, then, the
approximation algorithm may return a value 110.

4) If P is a minimization problem, and its optimal solution is 100, then, the
approximation algorithm may return a value 20.

Exercise 2 [50 points in total]

1 We have seen the Activity Selection problem in the lecture a few times when we
talked about dynamic programming and greedy algorithms. Let’s now consider a
slightly different problem called Weighted Activity Selection.

We are given a set of activities, where

• each activity ai has a start time si and a finish time fi, indicating that the
activity lasts during the time interval [si, fi);

• each activity is also associated with a weight wi.

We define that two activities are compatible if their intervals do not intersect. Now,
our goal is to identify maximum weight subset of mutually compatible activities.

For example, given the activities shown in Table 1. The Weighted Activity
Selection problem chooses subset {a2, a4} as they are mutually compatible and
the sum of weights of the subset is the largest. In contrast, Activity Selection
chooses subset {a1, a3, a5} as they are mutually compatible and the subset has the
largest cardinality.

Activity a1 a2 a3 a4 a5
Start time 1 5 8 12 15
Finish time 6 9 13 17 20
Weight time 10 25 20 30 10

Table 1: A Set of Activities with their start times, finish times, and weights

• 1.1 (10 points) Formalize the Weighted Activity Selection problem. Write
down the recurrence.

• 1.2 (10 points) Design an algorithm using, e.g., Dynamic Programming or
Greedy Algorithms, to solve the formalized problem. If you use greedy algo-
rithms, please write explicitly what is your greedy strategy and argue why
it is correct.

6



• 1.3 (5 points) Identify the time complexity of your algorithm.

2 A few families go out for dinner together. A family may have different numbers
of members and a table may have different numbers of seats. When choosing seats,
all families have agreed to follow the rule:

“Members from the same family should not sit at the same table.”

Now, we want to solve the following two problems.

• Problem P1: Identify whether it is possible to find a seat arrangement such
that the rule is satisfied.

• Problem P2: If it is possible to find a seat arrangement that satisfies the
rule, describe such a seat arrangement, e.g., who should sit at which table.

To be more precise, assume that we have X families f1, f2, . . ., fX and the i-th
family fi has mi members, where 1 ≤ i ≤ X. Further, assume that we have Y
tables t1, t2, . . ., tY and the j-th table tj has sj seats, where 1 ≤ j ≤ Y .

2.1 (10 points) Show how this problem can be formalized into a maximum flow
problem. Write down what do vertices represent, which vertices should be con-
nected by edges, and what is the capacity for each edge.
2.2 (5 points) Design an algorithm to solve the two problems P1 and P2.

Consider a concrete example where we have 3 families f1, f2, f3. Family f1 has 2
members, family f2 has 3 members, and family f3 has 4 members; and a restaurant
has 4 tables, where table t1 has only 2 seats, where the remaining 3 tables all have
4 seats.

2.3 (5 points) Draw the flow network for this concrete example.
2.4 (5 points) Run the algorithm that you have designed on this concrete example
and show the results to the two problems P1 and P2.

7


