
DBS – Transactions

Database Systems
Transactions

Christian S. Jensen

Department of Computer Science
Aalborg University

csj@cs.aau.dk

Spring 2020

Christian S. Jensen DBS – Transactions Spring 2020 1 / 86

DBS – Transactions

Learning goals: transactions and schedules

Learning goals

Understanding the transaction concept

Understanding the ACID properties

Understanding the schedule concept

Understanding serializability

Understanding recoverable and cascadeless schedules

Motivation

Users think in transactions

Transaction boundaries are an important part of system design

Offers a foundation for database tuning

Enables assessment of system capabilities

Christian S. Jensen DBS – Transactions March 16, 2020 2 / 86

DBS – Transactions

Outline I

1 Transactions
Characteristics
Operations on transactions
Guaranteeing ACID properties

2 Schedules and serializability
Schedules
Conflict serializability
Conflict graphs (precedence graphs)
Recoverable and cascadeless schedules

3 Concurrency control
Lock-based synchronization
Two-phase locking (2PL)
Lock conversion
Deadlock detection
Christian S. Jensen DBS – Transactions March 16, 2020 2 / 86

DBS – Transactions

Outline II

Deadlock prevention

4 Recovery
Failure classification
Data storage
Log entries
Log-based recovery

Christian S. Jensen DBS – Transactions March 16, 2020 3 / 86

DBS – Transactions

Transactions

Characteristics

Introduction

An example bank transfer

1 Read the account balance of A into variable a: read(A, a);

2 Reduce account balance by 500 kr.: a := a− 500;

3 Write the new account balance into the database: write(A, a);

4 Read account balance of B into variable b: read(B, b);

5 Increase account balance by 500 kr.: b := b+ 500;

6 Write new balance into the database: write(B, b);

Christian S. Jensen DBS – Transactions March 16, 2020 3 / 86

DBS – Transactions

Transactions

Characteristics

Introduction

An example bank transfer

1 Read the account balance of A into variable a: read(A, a);

2 Reduce account balance by 500 kr.: a := a− 500;

3 Write the new account balance into the database: write(A, a);

4 Read account balance of B into variable b: read(B, b);

5 Increase account balance by 500 kr.: b := b+ 500;

6 Write new balance into the database: write(B, b);

What could cause a problem?

Christian S. Jensen DBS – Transactions March 16, 2020 3 / 86

DBS – Transactions

Transactions

Characteristics

Introduction

An example bank transfer

1 Read the account balance of A into variable a: read(A, a);

2 Reduce account balance by 500 kr.: a := a− 500;

3 Write the new account balance into the database: write(A, a);

4 Read account balance of B into variable b: read(B, b);

5 Increase account balance by 500 kr.: b := b+ 500;

6 Write new balance into the database: write(B, b);

All steps must be treated as a unit: “All or nothing.”

Once completed, the changes should be stored permanently.

Christian S. Jensen DBS – Transactions March 16, 2020 3 / 86

DBS – Transactions

Transactions

Characteristics

What is a transaction?

A transaction is a collection of operations that forms a logical unit of
work, during which various data items are accessed and possibly updated.

Transaction boundaries are user-defined!

Christian S. Jensen DBS – Transactions March 16, 2020 4 / 86

DBS – Transactions

Transactions

Characteristics

Characteristics of transactions: ACID properties

Atomicity

Either all operations of the transaction are properly reflected in the
database or none are.

Often implemented via logs

Consistency

Execution of a transaction in isolation preserves the consistency of the
database.

According to constraints, checks, assertions

In addition, consistency is defined by the application, e.g., fund
transfers should not generate or destroy money – the overall sum is
the same before and afterwards

Christian S. Jensen DBS – Transactions March 16, 2020 5 / 86

DBS – Transactions

Transactions

Characteristics

Characteristics of transactions: ACID properties

Atomicity

Either all operations of the transaction are properly reflected in the
database or none are.

Often implemented via logs

Consistency

Execution of a transaction in isolation preserves the consistency of the
database.

According to constraints, checks, assertions

In addition, consistency is defined by the application, e.g., fund
transfers should not generate or destroy money – the overall sum is
the same before and afterwards

Christian S. Jensen DBS – Transactions March 16, 2020 5 / 86

DBS – Transactions

Transactions

Characteristics

Characteristics of transactions: ACID properties

Isolation

Each transaction appears to have the DB exclusively on its own.

Intermediate results must be hidden for other transactions.

Often implemented via locks

Durability

Updates of successfully completed transactions must not get lost
despite system failures.

Often implemented via logs

Christian S. Jensen DBS – Transactions March 16, 2020 5 / 86

DBS – Transactions

Transactions

Characteristics

Characteristics of transactions: ACID properties

Isolation

Each transaction appears to have the DB exclusively on its own.

Intermediate results must be hidden for other transactions.

Often implemented via locks

Durability

Updates of successfully completed transactions must not get lost
despite system failures.

Often implemented via logs

Christian S. Jensen DBS – Transactions March 16, 2020 5 / 86

DBS – Transactions

Transactions

Operations on transactions

Outline

1 Transactions
Characteristics
Operations on transactions
Guaranteeing ACID properties

Christian S. Jensen DBS – Transactions March 16, 2020 5 / 86

DBS – Transactions

Transactions

Operations on transactions

Operations on transactions

begin of transaction (BOT)

Represents the beginning of a transaction, i.e., all following statements
together form a transaction.
In SQL BEGIN;

commit

Represents the end of a transaction, i.e., all changes are made persistent
and visible to others.
In SQL COMMIT;

rollback or abort

Causes a transaction to roll back, i.e., all changes are undone/discarded.
In SQL ROLLBACK;

“autocommit” mode

Each statement is executed in its own transaction

Christian S. Jensen DBS – Transactions March 16, 2020 6 / 86

DBS – Transactions

Transactions

Operations on transactions

Operations on transactions

begin of transaction (BOT)

Represents the beginning of a transaction, i.e., all following statements
together form a transaction.
In SQL BEGIN;

commit

Represents the end of a transaction, i.e., all changes are made persistent
and visible to others.
In SQL COMMIT;

rollback or abort

Causes a transaction to roll back, i.e., all changes are undone/discarded.
In SQL ROLLBACK;

“autocommit” mode

Each statement is executed in its own transaction

Christian S. Jensen DBS – Transactions March 16, 2020 6 / 86

DBS – Transactions

Transactions

Operations on transactions

Operations on transactions

begin of transaction (BOT)

Represents the beginning of a transaction, i.e., all following statements
together form a transaction.
In SQL BEGIN;

commit

Represents the end of a transaction, i.e., all changes are made persistent
and visible to others.
In SQL COMMIT;

rollback or abort

Causes a transaction to roll back, i.e., all changes are undone/discarded.
In SQL ROLLBACK;

“autocommit” mode

Each statement is executed in its own transaction

Christian S. Jensen DBS – Transactions March 16, 2020 6 / 86

DBS – Transactions

Transactions

Operations on transactions

Operations on transactions

“autocommit” mode

Each statement is executed in its own transaction

Christian S. Jensen DBS – Transactions March 16, 2020 6 / 86

DBS – Transactions

Transactions

Operations on transactions

Basic consistency checks

CREATE TABLE emp(

eid INT PRIMARY KEY ,

ename VARCHAR (30) NOT NULL ,

salary INT NOT NULL CHECK (salary > 0)

);

-- primary key violation

insert into emp values (11, ’Kim’, 200);

-- Not null constraint violation

insert into emp values (44, NULL , 200);

-- Check statement violation

insert into emp values (44, ’Kim’, -200);

Many errors can be caught by the DBMS—Use it!

Christian S. Jensen DBS – Transactions March 16, 2020 7 / 86

DBS – Transactions

Transactions

Operations on transactions

Basic consistency checks

CREATE TABLE emp(

eid INT PRIMARY KEY ,

ename VARCHAR (30) NOT NULL ,

salary INT NOT NULL CHECK (salary > 0)

);

-- primary key violation

insert into emp values (11, ’Kim’, 200);

-- Not null constraint violation

insert into emp values (44, NULL , 200);

-- Check statement violation

insert into emp values (44, ’Kim’, -200);

Many errors can be caught by the DBMS—Use it!
Christian S. Jensen DBS – Transactions March 16, 2020 7 / 86

DBS – Transactions

Transactions

Operations on transactions

Savepoints

Long running transactions can specify savepoints.

SAVEPOINT savepoint name;

Defines a point/state within a transaction
A transaction can be rolled back partially back up to the savepoint.

ROLLBACK TO <savepoint name>:
rolls the active transaction back to the savepoint <savepoint name>

Christian S. Jensen DBS – Transactions March 16, 2020 8 / 86

DBS – Transactions

Transactions

Operations on transactions

Savepoints

Long running transactions can specify savepoints.

SAVEPOINT savepoint name;

Defines a point/state within a transaction
A transaction can be rolled back partially back up to the savepoint.

ROLLBACK TO <savepoint name>:
rolls the active transaction back to the savepoint <savepoint name>

Christian S. Jensen DBS – Transactions March 16, 2020 8 / 86

DBS – Transactions

Transactions

Operations on transactions

Example

BEGIN;

INSERT INTO tab VALUES. . .

SAVEPOINT A;

INSERT INTO tab VALUES. . .

SAVEPOINT B;

SELECT * FROM tab;

ROLLBACK TO A;

SELECT * FROM tab;

. . .

Christian S. Jensen DBS – Transactions March 16, 2020 9 / 86

DBS – Transactions

Transactions

Operations on transactions

Transaction states

activestart

partial

failed

committed

aborted

Christian S. Jensen DBS – Transactions March 16, 2020 10 / 86

DBS – Transactions

Transactions

Guaranteeing ACID properties

How do DBMSs support transactions?

The two most important components of transaction management are

Multi-user synchronization (isolation)

Semantic correctness despite concurrency
Concurrency allows for high throughput

Serializability

Weaker isolation levels

Recovery (atomicity and durability)

Roll back partially executed transactions

Re-executing transactions after failures

Guaranteeing persistence of transactional updates

Christian S. Jensen DBS – Transactions March 16, 2020 11 / 86

DBS – Transactions

Transactions

Guaranteeing ACID properties

How do DBMSs support transactions?

The two most important components of transaction management are

Multi-user synchronization (isolation)

Semantic correctness despite concurrency
Concurrency allows for high throughput

Serializability

Weaker isolation levels

Recovery (atomicity and durability)

Roll back partially executed transactions

Re-executing transactions after failures

Guaranteeing persistence of transactional updates

Christian S. Jensen DBS – Transactions March 16, 2020 11 / 86

DBS – Transactions

Schedules and serializability

Outline

2 Schedules and serializability
Schedules
Conflict serializability
Conflict graphs (precedence graphs)
Recoverable and cascadeless schedules

Christian S. Jensen DBS – Transactions March 16, 2020 11 / 86

DBS – Transactions

Schedules and serializability

Concurrency

Affects the
”
I“ in ACID.

The execution of multiple transactions T1, T2, and T3

(a) in a single-user environment

(b) in a (concurrent) multi-user environment with interleaved execution

Christian S. Jensen DBS – Transactions March 16, 2020 12 / 86

DBS – Transactions

Schedules and serializability

Concurrency

Affects the
”
I“ in ACID.

The execution of multiple transactions T1, T2, and T3

(a) in a single-user environment

(b) in a (concurrent) multi-user environment with interleaved execution

Christian S. Jensen DBS – Transactions March 16, 2020 12 / 86

DBS – Transactions

Schedules and serializability

Potential problems during concurrent execution

What’s the problem?

Steps T1 T2

1. read(A,a1)
2. a1 := a1− 300
3. read(A,a2)
4. a2 := a2 ∗ 1.03
5. write(A,a2)
6. write(A,a1)
7. read(B,b1)
8. b1 := b1 + 300
9. write(B,b1)

Christian S. Jensen DBS – Transactions March 16, 2020 13 / 86

DBS – Transactions

Schedules and serializability

Potential problems during concurrent execution

Lost updates (overwriting updates)

Steps T1 T2

1. read(A,a1)
2. a1 := a1− 300
3. read(A,a2)
4. a2 := a2 ∗ 1.03
5. write(A,a2)
6. write(A,a1)
7. read(B,b1)
8. b1 := b1 + 300
9. write(B,b1)

Christian S. Jensen DBS – Transactions March 16, 2020 13 / 86

DBS – Transactions

Schedules and serializability

Potential problems during concurrent execution

What’s the problem?

Steps T1 T2

1. read(A,a1)
2. a1 := a1 − 300
3. write(A,a1)
4. read(A,a2)
5. a2 := a2 ∗ 1.03
6. write(A,a2)
7. read(B, b1)
8. ...
9. abort

Christian S. Jensen DBS – Transactions March 16, 2020 14 / 86

DBS – Transactions

Schedules and serializability

Potential problems during concurrent execution

Dirty read (dependency on non-committed updates)

Steps T1 T2

1. read(A,a1)
2. a1 := a1 − 300
3. write(A,a1)
4. read(A,a2)
5. a2 := a2 ∗ 1.03
6. write(A,a2)
7. read(B, b1)
8. ...
9. abort

Christian S. Jensen DBS – Transactions March 16, 2020 14 / 86

DBS – Transactions

Schedules and serializability

Potential problems during concurrent execution

What’s the problem?

T1 T2

select sum(balance)
from account

update account
set balance=42000
where accountID=12345

select sum(balance)
from account

Christian S. Jensen DBS – Transactions March 16, 2020 15 / 86

DBS – Transactions

Schedules and serializability

Potential problems during concurrent execution

Non-repeatable read (dependency on other updates)

T1 T2

select sum(balance)
from account

update account
set balance=42000
where accountID=12345

select sum(balance)
from account

Christian S. Jensen DBS – Transactions March 16, 2020 15 / 86

DBS – Transactions

Schedules and serializability

Potential problems during concurrent execution

What’s the problem?

T1 T2

select sum(balance)
from account

insert into account
values (C,1000,...)

select sum(balance)
from account

Christian S. Jensen DBS – Transactions March 16, 2020 16 / 86

DBS – Transactions

Schedules and serializability

Potential problems during concurrent execution

Phantom problem (dependency on new/deleted tuples)

T1 T2

select sum(balance)
from account

insert into account
values (C,1000,...)

select sum(balance)
from account

Christian S. Jensen DBS – Transactions March 16, 2020 16 / 86

DBS – Transactions

Schedules and serializability

Schedules

Outline

2 Schedules and serializability
Schedules
Conflict serializability
Conflict graphs (precedence graphs)
Recoverable and cascadeless schedules

Christian S. Jensen DBS – Transactions March 16, 2020 16 / 86

DBS – Transactions

Schedules and serializability

Schedules

Concurrency and correctness

Centralized system with concurrent access by multiple users

Database consisting of two data items: X and Y

Only criterion for correctness: X = Y

The following transactions

T1 X ← X + 1
Y ← Y + 1

T2 X ← 2 * X
Y ← 2 * Y

Initially: X=10 and Y=10.

T1 followed by T2 ⇒ X = 22 and Y = 22

T2 followed by T1 ⇒ X = 21 and Y = 21

Christian S. Jensen DBS – Transactions March 16, 2020 17 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 10
Value of Y: 10

schedule S0

T1 T2

read(X, x)

x ← 2x
write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 10
Value of Y: 10

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 20
Value of Y: 10

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)

read(Y, y)
y ← 2y

write(Y, y)
read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 20
Value of Y: 10

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 20
Value of Y: 10

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y

write(Y, y)
read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 20
Value of Y: 20

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 20
Value of Y: 20

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)

x ← x+1
write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 20
Value of Y: 20

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 21
Value of Y: 20

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)

read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 21
Value of Y: 20

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)

y ← y+1
write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 21
Value of Y: 20

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

An example

Value of X: 21
Value of Y: 21

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

Christian S. Jensen DBS – Transactions March 16, 2020 18 / 86

DBS – Transactions

Schedules and serializability

Schedules

Formal definition of a schedules

A schedule is a sequence of operations from one or more transactions.
For concurrent transactions, the operations are interleaved.

Operations

read(Q, q)
Read the value of database item Q and store it in the local variable q.

write(Q, q)
Store the value of the local variable q in database item Q

Arithmetic operations

commit

abort

Christian S. Jensen DBS – Transactions March 16, 2020 19 / 86

DBS – Transactions

Schedules and serializability

Schedules

Formal definition of a schedules

A schedule is a sequence of operations from one or more transactions.
For concurrent transactions, the operations are interleaved.

serial schedule

The operations of the transactions are executed sequentially with no
overlap in time.

concurrent schedule

The operations of the transactions are executed with overlap in time.

Christian S. Jensen DBS – Transactions March 16, 2020 19 / 86

DBS – Transactions

Schedules and serializability

Schedules

Formal definition of a schedules

A schedule is a sequence of operations from one or more transactions.
For concurrent transactions, the operations are interleaved.

serial schedule

The operations of the transactions are executed sequentially with no
overlap in time.

concurrent schedule

The operations of the transactions are executed with overlap in time.

valid schedule

A schedule is valid if the result of its execution is “correct”.

Christian S. Jensen DBS – Transactions March 16, 2020 19 / 86

DBS – Transactions

Schedules and serializability

Schedules

Example schedules
schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

schedule S0′

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(X, x)
x ← x+1

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(Y, y)
y ← y+1

write(Y, y)

schedule S1

T1 T2

read(X, x)
x ← x+1

write(X, x)
read(X, x)

x ← 2x
write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(Y, y)
y ← y+1

write(Y, y)

Are these schedules valid concurrent schedules, invalid concurrent schedules, or
serial schedules? Initially: X=Y=10, correctness criterion: X=Y

Christian S. Jensen DBS – Transactions March 16, 2020 20 / 86

DBS – Transactions

Schedules and serializability

Schedules

Example schedules

schedule S0

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(X, x)
x ← x+1

write(X, x)
read(Y, y)
y ← y+1

write(Y, y)

X = 21, Y = 21

serial schedule

schedule S0′

T1 T2

read(X, x)
x ← 2x

write(X, x)
read(X, x)
x ← x+1

write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(Y, y)
y ← y+1

write(Y, y)

X = 21, Y = 21

concurrent schedule

schedule S1

T1 T2

read(X, x)
x ← x+1

write(X, x)
read(X, x)

x ← 2x
write(X, x)
read(Y, y)

y ← 2y
write(Y, y)

read(Y, y)
y ← y+1

write(Y, y)

X = 22, Y = 21

an invalid schedule

Christian S. Jensen DBS – Transactions March 16, 2020 20 / 86

DBS – Transactions

Schedules and serializability

Schedules

Notion of correctness

Definition D1

A concurrent execution of transactions must leave the database in a
consistent state.

Definition D2

Concurrent execution of transactions must be (result) equivalent to some
serial execution of the transactions.

Christian S. Jensen DBS – Transactions March 16, 2020 21 / 86

DBS – Transactions

Schedules and serializability

Schedules

Notion of correctness

Definition D1

A concurrent execution of transactions must leave the database in a
consistent state.

Definition D2

Concurrent execution of transactions must be (result) equivalent to some
serial execution of the transactions.

Christian S. Jensen DBS – Transactions March 16, 2020 21 / 86

DBS – Transactions

Schedules and serializability

Schedules

Example

schedule S2

T3 T4

read(X, x)
x ← x+1

read(X, x)
write(X, x)

x ← 2x
write(X, x)
read(Y, y)

y ← 2y
read(Y, y)
y ← y+1

write(Y, y)
write(Y, y)

Initially: X = 10 and Y = 10
⇒ X = 20 and Y = 20

S2 is not result equivalent to a
serial execution of T3, T4

But the final database state is
consistent.

Christian S. Jensen DBS – Transactions March 16, 2020 22 / 86

DBS – Transactions

Schedules and serializability

Schedules

Example

schedule S2

T3 T4

read(X, x)
x ← x+1

read(X, x)
write(X, x)

x ← 2x
write(X, x)
read(Y, y)

y ← 2y
read(Y, y)
y ← y+1

write(Y, y)
write(Y, y)

Initially: X = 10 and Y = 10
⇒ X = 20 and Y = 20

S2 is not result equivalent to a
serial execution of T3, T4

But the final database state is
consistent.

Christian S. Jensen DBS – Transactions March 16, 2020 22 / 86

DBS – Transactions

Schedules and serializability

Schedules

Correctness of a schedule

The choice is definition D2:
An execution sequence is correct if it is result equivalent to a serial
execution.

Given a set of n transactions running concurrently. How do we efficiently
check for correctness?

In the following: simplifying assumptions

Only reads and writes are used to determine correctness.

This assumption is stronger than definition D2, as even fewer
schedules are considered correct.

Christian S. Jensen DBS – Transactions March 16, 2020 23 / 86

DBS – Transactions

Schedules and serializability

Schedules

Correctness of a schedule

The choice is definition D2:
An execution sequence is correct if it is result equivalent to a serial
execution.

Given a set of n transactions running concurrently. How do we efficiently
check for correctness?

In the following: simplifying assumptions

Only reads and writes are used to determine correctness.

This assumption is stronger than definition D2, as even fewer
schedules are considered correct.

Christian S. Jensen DBS – Transactions March 16, 2020 23 / 86

DBS – Transactions

Schedules and serializability

Schedules

Correctness of a schedule

The choice is definition D2:
An execution sequence is correct if it is result equivalent to a serial
execution.

Given a set of n transactions running concurrently. How do we efficiently
check for correctness?

In the following: simplifying assumptions

Only reads and writes are used to determine correctness.

This assumption is stronger than definition D2, as even fewer
schedules are considered correct.

Christian S. Jensen DBS – Transactions March 16, 2020 23 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Outline

2 Schedules and serializability
Schedules
Conflict serializability
Conflict graphs (precedence graphs)
Recoverable and cascadeless schedules

Christian S. Jensen DBS – Transactions March 16, 2020 23 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

A fourth1 notion of correctness: conflict serializability

Definition (D41)

A schedule is conflict serializable if it is conflict equivalent to a serial
schedule.

1The third notion/definition (D3) is view serializability.
Christian S. Jensen DBS – Transactions March 16, 2020 24 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Possible conflicts between transactions

Conflicts between pairs of transactions (T1 and T2) and their instructions.

schedule SA

T1 T2

write(X, x)
read(X, x)

Conflict

schedule SB

T1 T2

write(X, x)
write(X, x)

Conflict

schedule SC

T1 T2

read(X, x)
write(X, x)

Conflict

schedule SD

T1 T2

read(X, x)
read(X, x)

No conflict

Christian S. Jensen DBS – Transactions March 16, 2020 25 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

A fourth notion of correctness: conflict serializability

Definition (D4)

A schedule is conflict serializable if it is conflict equivalent to a serial
schedule.

Let I and J be consecutive instructions of a schedule S of multiple
transactions.

If I and J do not conflict, we can swap their order to produce a new
schedule S’.

The instructions appear in the same order in S and S’, except for I
and J, whose order does not matter.

S and S’ are termed conflict equivalent schedules.

Christian S. Jensen DBS – Transactions March 16, 2020 26 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Conflict equivalence of two schedules

As the transformation shows, the initial concurrent schedule is conflict
equivalent to a serial schedule and is therefore conflict serializable.

r1(A) ! r2(C) ! w1(A) ! w2(C) ! r1(B) ! w1(B) ! c1 ! r2(A) ! w2(A) ! c2

r1(A) ! w1(A) ! r2(C) ! w2(C) ! r1(B) ! w1(B) ! c1 ! r2(A) ! w2(A) ! c2

r1(A) ! w1(A) ! r1(B) ! r2(C) ! w2(C) ! w1(B) ! c1 ! r2(A) ! w2(A) ! c2

r1(A) ! w1(A) ! r1(B) ! w1(B) ! c1 ! r2(C) ! w2(C) ! r2(A) ! w2(A) ! c2

T1 T2

c is short for commit, r (read), w (write)

Christian S. Jensen DBS – Transactions March 16, 2020 27 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Conflict serializable or not?

schedule SA

T1 T2

read(Y, y)
read(X, x)
write(X, x)

write(Y, y)

conflict serializable

schedule SC

T5 T6

read(X, x)
read(X, x)

write(X, x)

conflict serializable

schedule SB

T3 T4

read(X, x)
read(X, x)
write(X, x)

write(X, x)

not conflict serializable

schedule SD

T7 T8

read(X, x)
write(X, x)

write(X, x)

not conflict serializable

Christian S. Jensen DBS – Transactions March 16, 2020 28 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Conflict serializable or not?

schedule SA

T1 T2

read(Y, y)
read(X, x)
write(X, x)

write(Y, y)

conflict serializable

schedule SC

T5 T6

read(X, x)
read(X, x)

write(X, x)

conflict serializable

schedule SB

T3 T4

read(X, x)
read(X, x)
write(X, x)

write(X, x)

not conflict serializable

schedule SD

T7 T8

read(X, x)
write(X, x)

write(X, x)

not conflict serializable

Christian S. Jensen DBS – Transactions March 16, 2020 28 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Conflict serializable or not?

schedule SA

T1 T2

read(Y, y)
read(X, x)
write(X, x)

write(Y, y)

conflict serializable

schedule SC

T5 T6

read(X, x)
read(X, x)

write(X, x)

conflict serializable

schedule SB

T3 T4

read(X, x)
read(X, x)
write(X, x)

write(X, x)

not conflict serializable

schedule SD

T7 T8

read(X, x)
write(X, x)

write(X, x)

not conflict serializable

Christian S. Jensen DBS – Transactions March 16, 2020 28 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Conflict serializable or not?

schedule SA

T1 T2

read(Y, y)
read(X, x)
write(X, x)

write(Y, y)

conflict serializable

schedule SC

T5 T6

read(X, x)
read(X, x)

write(X, x)

conflict serializable

schedule SB

T3 T4

read(X, x)
read(X, x)
write(X, x)

write(X, x)

not conflict serializable

schedule SD

T7 T8

read(X, x)
write(X, x)

write(X, x)

not conflict serializable

Christian S. Jensen DBS – Transactions March 16, 2020 28 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Conflict serializable or not?

schedule SA

T1 T2

read(Y, y)
read(X, x)
write(X, x)

write(Y, y)

conflict serializable

schedule SC

T5 T6

read(X, x)
read(X, x)

write(X, x)

conflict serializable

schedule SB

T3 T4

read(X, x)
read(X, x)
write(X, x)

write(X, x)

not conflict serializable

schedule SD

T7 T8

read(X, x)
write(X, x)

write(X, x)

not conflict serializable

Christian S. Jensen DBS – Transactions March 16, 2020 28 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Conflict serializable or not?

schedule SA

T1 T2

read(Y, y)
read(X, x)
write(X, x)

write(Y, y)

conflict serializable

schedule SC

T5 T6

read(X, x)
read(X, x)

write(X, x)

conflict serializable

schedule SB

T3 T4

read(X, x)
read(X, x)
write(X, x)

write(X, x)

not conflict serializable

schedule SD

T7 T8

read(X, x)
write(X, x)

write(X, x)

not conflict serializable

Christian S. Jensen DBS – Transactions March 16, 2020 28 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Conflict serializable or not?

schedule SA

T1 T2

read(Y, y)
read(X, x)
write(X, x)

write(Y, y)

conflict serializable

schedule SC

T5 T6

read(X, x)
read(X, x)

write(X, x)

conflict serializable

schedule SB

T3 T4

read(X, x)
read(X, x)
write(X, x)

write(X, x)

not conflict serializable

schedule SD

T7 T8

read(X, x)
write(X, x)

write(X, x)

not conflict serializable

Christian S. Jensen DBS – Transactions March 16, 2020 28 / 86

DBS – Transactions

Schedules and serializability

Conflict serializability

Conflict serializable or not?

schedule SA

T1 T2

read(Y, y)
read(X, x)
write(X, x)

write(Y, y)

conflict serializable

schedule SC

T5 T6

read(X, x)
read(X, x)

write(X, x)

conflict serializable

schedule SB

T3 T4

read(X, x)
read(X, x)
write(X, x)

write(X, x)

not conflict serializable

schedule SD

T7 T8

read(X, x)
write(X, x)

write(X, x)

not conflict serializable

Christian S. Jensen DBS – Transactions March 16, 2020 28 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Outline

2 Schedules and serializability
Schedules
Conflict serializability
Conflict graphs (precedence graphs)
Recoverable and cascadeless schedules

Christian S. Jensen DBS – Transactions March 16, 2020 28 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Conflict graph

We construct a directed graph (conflict/precedence graph) for a schedule
involving a set of transactions.

Assumption:
a transaction will always read an item before it writes that item.

Given a schedule for a set of transactions T1, T2, . . ., Tn

The vertices of the conflict graph are the transaction identifiers.

An edge from Ti to Tj denotes that the two transactions are
conflicting, with Ti making the relevant access earlier.

Sometimes the edge is labeled with the item involved in the conflict.

Christian S. Jensen DBS – Transactions March 16, 2020 29 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Conflict graph

We construct a directed graph (conflict/precedence graph) for a schedule
involving a set of transactions.

Assumption:
a transaction will always read an item before it writes that item.

Given a schedule for a set of transactions T1, T2, . . ., Tn

The vertices of the conflict graph are the transaction identifiers.

An edge from Ti to Tj denotes that the two transactions are
conflicting, with Ti making the relevant access earlier.

Sometimes the edge is labeled with the item involved in the conflict.

Christian S. Jensen DBS – Transactions March 16, 2020 29 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Determining serializability

Given a schedule S and a conflict graph how can we determine if the
schedule is conflict serializable?

We use conflict serializability (not any other definition of serializability)
because it has a practical implementation.

Christian S. Jensen DBS – Transactions March 16, 2020 30 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Determining serializability

Given a schedule S and a conflict graph how can we determine if the
schedule is conflict serializable?

A schedule is conflict serializable if its conflict graph is acyclic.

Intuitively, a conflict between two transactions forces an execution
order between them (topological sorting)

We use conflict serializability (not any other definition of serializability)
because it has a practical implementation.

Christian S. Jensen DBS – Transactions March 16, 2020 30 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Determining serializability

Given a schedule S and a conflict graph how can we determine if the
schedule is conflict serializable?

A schedule is conflict serializable if its conflict graph is acyclic.

Intuitively, a conflict between two transactions forces an execution
order between them (topological sorting)

We use conflict serializability (not any other definition of serializability)
because it has a practical implementation.

Christian S. Jensen DBS – Transactions March 16, 2020 30 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Conflict graph example
schedule S6

T10 T11 T12 T13 T14

read(X, x)
read(Y, y)
read(Z, z)

read(V, v)
read(W, w)
write(W, w)

read(Y, y)
write(Y, y)

read(Z, z)
write(Z, z)

read(T, t)
read(Y, y)
write(Y, y)
read(Z, z)
write(Z, z)

read(U, u)

T10 T11

T12 T13 T14

Christian S. Jensen DBS – Transactions March 16, 2020 31 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Conflict graph example
schedule S6

T10 T11 T12 T13 T14

read(X, x)
read(Y, y)
read(Z, z)

read(V, v)
read(W, w)
write(W, w)

read(Y, y)
write(Y, y)

read(Z, z)
write(Z, z)

read(T, t)
read(Y, y)
write(Y, y)
read(Z, z)
write(Z, z)

read(U, u)

T10 T11

T12 T13 T14

Christian S. Jensen DBS – Transactions March 16, 2020 31 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Conflict graph example

schedule S6
T10 T11 T12 T13 T14

read(X, x)
read(Y, y)
read(Z, z)

read(V, v)
read(W, w)
write(W, w)

read(Y, y)
write(Y, y)

read(Z, z)
write(Z, z)

read(T, t)
read(Y, y)
write(Y, y)
read(Z, z)
write(Z, z)

read(U, u)

T10 T11

T12 T13

T14

Which of the following are conflict equivalent serial schedules?

T10, T11, T12, T13, and T14 Yes

T14, T10, T12, T11, and T13 Yes

T14, T13, T12, T11, and T10 No

Christian S. Jensen DBS – Transactions March 16, 2020 31 / 86

DBS – Transactions

Schedules and serializability

Conflict graphs (precedence graphs)

Relationship among schedules

Serial schedules

Conflict serializable schedules (D4)

View serializable schedules (D3)

Schedules equivalent to some serial schedule (D2)

Schedules leaving the database in a consistent state (D1)
All schedules

Christian S. Jensen DBS – Transactions March 16, 2020 32 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Outline

2 Schedules and serializability
Schedules
Conflict serializability
Conflict graphs (precedence graphs)
Recoverable and cascadeless schedules

Christian S. Jensen DBS – Transactions March 16, 2020 32 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Transaction Isolation and Atomicity

Transactions can fail

Christian S. Jensen DBS – Transactions March 16, 2020 33 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Recoverable schedules

schedule SA

Ti Tj

read(X, x)
write(X, x)

read(X, x)
write(X, x)

commit
rollback

If Ti fails, it must be rolled back to retain the atomicity property of
transactions (see recovery).

If another transaction Tj has read a data item written by Ti, then Tj

must also be rolled back.
⇒ database systems must ensure that schedules are recoverable

This schedule is not recoverable.

Christian S. Jensen DBS – Transactions March 16, 2020 34 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Recoverable schedules

schedule SA

Ti Tj

read(X, x)
write(X, x)

read(X, x)
write(X, x)

commit
rollback

If Ti fails, it must be rolled back to retain the atomicity property of
transactions (see recovery).

If another transaction Tj has read a data item written by Ti, then Tj

must also be rolled back.
⇒ database systems must ensure that schedules are recoverable

This schedule is not recoverable.

Christian S. Jensen DBS – Transactions March 16, 2020 34 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Recoverable schedules

schedule SA

Ti Tj

read(X, x)
write(X, x)

read(X, x)
write(X, x)

commit
rollback

If Ti fails, it must be rolled back to retain the atomicity property of
transactions (see recovery).

If another transaction Tj has read a data item written by Ti, then Tj

must also be rolled back.
⇒ database systems must ensure that schedules are recoverable

This schedule is not recoverable.

Christian S. Jensen DBS – Transactions March 16, 2020 34 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Recoverable schedules

A schedule is recoverable if for each pair of transactions Ti and Tj where
Tj reads data items written by Ti, then Ti must commit before Tj

commits.

schedule SA

Ti Tj

read(X, x)
write(X, x)

rollback
read(X, x)
write(X, x)

commit

Is this schedule recoverable?

schedule SB

Ti Tj

read(Y, y)
read(X, x)

write(Y, y)
write(X, x)

rollback
commit

Is this schedule recoverable?

Christian S. Jensen DBS – Transactions March 16, 2020 35 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Recoverable schedules

A schedule is recoverable if for each pair of transactions Ti and Tj where
Tj reads data items written by Ti, then Ti must commit before Tj

commits.

schedule SA

Ti Tj

read(X, x)
write(X, x)

rollback
read(X, x)
write(X, x)

commit

Is this schedule recoverable?

schedule SB

Ti Tj

read(Y, y)
read(X, x)

write(Y, y)
write(X, x)

rollback
commit

Is this schedule recoverable?

Christian S. Jensen DBS – Transactions March 16, 2020 35 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Recoverable schedules

A schedule is recoverable if for each pair of transactions Ti and Tj where
Tj reads data items written by Ti, Ti must commit before Tj commits.

schedule SA

Ti Tj

read(X, x)
write(X, x)

rollback
read(X, x)
write(X, x)

commit

recoverable

schedule SB

Ti Tj

read(Y, y)
read(X, x)

write(Y, y)
write(X, x)

rollback
commit

recoverable

Christian S. Jensen DBS – Transactions March 16, 2020 36 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Cascading rollbacks

schedule S11

T22 T23 T24

read(A, a)
read(B, b)
write(A, a)
write(B, b)

read(A, a)
read(A, a)
read(B, b)

rollback

What happens if we need to rollback T22?
Is this schedule recoverable?

Christian S. Jensen DBS – Transactions March 16, 2020 37 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Cascading rollbacks

schedule S11

T22 T23 T24

read(A, a)
read(B, b)
write(A, a)
write(B, b)

read(A, a)
read(A, a)
read(B, b)

rollback

T22 rollback ⇒ we have to rollback T23 and T24 because they read
”dirty” data. (cascading rollbacks)

This schedule is not cascadeless.

But this schedule is recoverable.

Christian S. Jensen DBS – Transactions March 16, 2020 37 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Cascadeless schedules

A schedule is cascadeless if for each pair of transactions Ti and Tj , where
Tj reads data items written by Ti, the commit operation of Ti must
appear before the read by Tj .

schedule SA

T1 T2 T3

read(A, a)
write(A, a)

commit
read(A, a)

read(A, a)
commit

commit

Christian S. Jensen DBS – Transactions March 16, 2020 38 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Cascadeless schedules

A schedule is cascadeless if for each pair of transactions Ti and Tj , where
Tj reads data items written by Ti, the commit operation of Ti must
appear before the read by Tj .

schedule S11′

T22 T23 T24

read(A, a)
read(B, b)
write(A, a)
write(B, b)

rollback
read(A, a)

commit
read(A, a)
read(B, b)

commit

This is also a
recoverable schedule

Christian S. Jensen DBS – Transactions March 16, 2020 39 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Cascadeless schedules

A schedule is cascadeless if for each pair of transactions Ti and Tj , where
Tj reads data items written by Ti, the commit operation of Ti must
appear before the read by Tj .

schedule S11′

T22 T23 T24

read(A, a)
read(B, b)
write(A, a)
write(B, b)

rollback
read(A, a)

commit
read(A, a)
read(B, b)

commit

This is also a
recoverable schedule

Cascading rollbacks
could be avoided by
only reading from
committed
transactions.

Christian S. Jensen DBS – Transactions March 16, 2020 39 / 86

DBS – Transactions

Schedules and serializability

Recoverable and cascadeless schedules

Cascadeless schedules

Every cascadeless schedule is also recoverable.

Cascading rollbacks can easily become expensive.

It is desirable to restrict the schedules to those that are cascadeless.

Christian S. Jensen DBS – Transactions March 16, 2020 40 / 86

DBS – Transactions

Schedules and serializability

Summary: transactions and schedules

Each transaction preserves database consistency

The serial execution of a set of transactions preserves database
consistency

In a concurrent execution, steps of a set of transactions may be
interleaved

A concurrent schedule is serializable if it is equivalent to a serial
schedule

Conflict serializability
Method of choice because it has a practical implementation
Conflict graphs

Schedules must be recoverable and cascadeless

Christian S. Jensen DBS – Transactions March 16, 2020 41 / 86

DBS – Transactions

Concurrency control

Learning goals

Learning goals: concurrency control

Understand and use lock-based concurrency control

Understand and use two-phase locking

Motivation

Exclusive access to a database used by multiple users comes at the
expense of throughput and runtime

Christian S. Jensen DBS – Transactions March 20, 2020 42 / 86

DBS – Transactions

Concurrency control

Outline I

1 Transactions
Characteristics
Operations on transactions
Guaranteeing ACID properties

2 Schedules and serializability
Schedules
Conflict serializability
Conflict graphs (precedence graphs)
Recoverable and cascadeless schedules

3 Concurrency control
Lock-based synchronization
Two-phase locking (2PL)
Lock conversion
Deadlock detection
Christian S. Jensen DBS – Transactions March 20, 2020 42 / 86

DBS – Transactions

Concurrency control

Outline II

Deadlock prevention

4 Recovery
Failure classification
Data storage
Log entries
Log-based recovery

Christian S. Jensen DBS – Transactions March 20, 2020 43 / 86

DBS – Transactions

Concurrency control

Scheduler

buffer manager

recovery manager

scheduler

data manager

T1 T2 Tn...

database

transaction manager

Task of the scheduler:
produce serializable schedules of
instructions (transactions T1, . . . , Tn)
that avoid cascading rollbacks

Realized by synchronization strategies

pessimistic

lock-based synchronization
timestamp-based synchronization

optimistic

Based on ”Datenbanksysteme: Ein Einführung”

by Alfons Kemper and Andre Eickler, Oldenbourg Verlag 2011.

Christian S. Jensen DBS – Transactions March 20, 2020 43 / 86

DBS – Transactions

Concurrency control

Scheduler

buffer manager

recovery manager

scheduler

data manager

T1 T2 Tn...

database

transaction manager Task of the scheduler:
produce serializable schedules of
instructions (transactions T1, . . . , Tn)
that avoid cascading rollbacks

Realized by synchronization strategies

pessimistic

lock-based synchronization
timestamp-based synchronization

optimistic

Based on ”Datenbanksysteme: Ein Einführung”

by Alfons Kemper and Andre Eickler, Oldenbourg Verlag 2011.

Christian S. Jensen DBS – Transactions March 20, 2020 43 / 86

DBS – Transactions

Concurrency control

Scheduler

buffer manager

recovery manager

scheduler

data manager

T1 T2 Tn...

database

transaction manager Task of the scheduler:
produce serializable schedules of
instructions (transactions T1, . . . , Tn)
that avoid cascading rollbacks

Realized by synchronization strategies

pessimistic

lock-based synchronization
timestamp-based synchronization

optimistic

Based on ”Datenbanksysteme: Ein Einführung”

by Alfons Kemper and Andre Eickler, Oldenbourg Verlag 2011.

Christian S. Jensen DBS – Transactions March 20, 2020 43 / 86

DBS – Transactions

Concurrency control

Scheduler

buffer manager

recovery manager

scheduler

data manager

T1 T2 Tn...

database

transaction manager Task of the scheduler:
produce serializable schedules of
instructions (transactions T1, . . . , Tn)
that avoid cascading rollbacks

Realized by synchronization strategies

pessimistic

lock-based synchronization
timestamp-based synchronization

optimistic

Based on ”Datenbanksysteme: Ein Einführung”

by Alfons Kemper and Andre Eickler, Oldenbourg Verlag 2011.

Christian S. Jensen DBS – Transactions March 20, 2020 43 / 86

DBS – Transactions

Concurrency control

Lock-based synchronization

Lock-based synchronization

Ensuring (conflict) serializable schedules by delaying transactions that
could violate serializability.

Two types of locks can be held on a data item Q

S (shared, read lock)

X (exclusive, write lock)

Operations on locks

lock S(Q) – set shared lock on data item Q

lock X(Q) – set exclusive lock on data item Q

unlock(Q) – release lock on data item Q

Christian S. Jensen DBS – Transactions March 20, 2020 44 / 86

DBS – Transactions

Concurrency control

Lock-based synchronization

Lock-based synchronization

Ensuring (conflict) serializable schedules by delaying transactions that
could violate serializability.

Two types of locks can be held on a data item Q

S (shared, read lock)

X (exclusive, write lock)

Operations on locks

lock S(Q) – set shared lock on data item Q

lock X(Q) – set exclusive lock on data item Q

unlock(Q) – release lock on data item Q

Christian S. Jensen DBS – Transactions March 20, 2020 44 / 86

DBS – Transactions

Concurrency control

Lock-based synchronization

Lock-based synchronization

Privileges associated with locks

A transaction holding

an exclusive lock may issue a write or read access request on the item

a shared lock may issue a read access request on the item

Compatibility matrix

NL S X
S OK OK -
X OK - -

NL – no lock

Concurrent transactions can only be granted compatible locks

A transaction might have to wait until a requested lock can be
granted!

Christian S. Jensen DBS – Transactions March 20, 2020 45 / 86

DBS – Transactions

Concurrency control

Lock-based synchronization

Lock-based synchronization

Privileges associated with locks

A transaction holding

an exclusive lock may issue a write or read access request on the item

a shared lock may issue a read access request on the item

Compatibility matrix

NL S X
S OK OK -
X OK - -

NL – no lock

Concurrent transactions can only be granted compatible locks

A transaction might have to wait until a requested lock can be
granted!

Christian S. Jensen DBS – Transactions March 20, 2020 45 / 86

DBS – Transactions

Concurrency control

Lock-based synchronization

Problems with early unlockingschedule S7

T15 T16

lock X(B)
read(B, b)
b ← b - 50
write(B, b)
unlock(B)

lock S(A)
read(A, a)
unlock(A)
lock S(B)
read(B, b)
unlock(B)

display(A+B)
lock X(A)
read(A, A)

a ← a + 50
write(A, a)
unlock(A)

Initially A = 100 and B = 200

serial schedule T15;T16 prints 300

serial schedule T16;T15 prints 300

S7 prints 250

Early unlocking can cause incorrect
results (non-serializable schedules)

but allows for a higher degree of
concurrency.

Christian S. Jensen DBS – Transactions March 20, 2020 46 / 86

DBS – Transactions

Concurrency control

Lock-based synchronization

Problems with late unlocking

Conclusion: Let’s delay unlocking until the end of the transaction.

schedule S8

T17 T18

lock X(B)
read(B, b)
b ← b - 50
write(B, b)

lock S(A)
read(A, a)

.
unlock(B) unlock(A)

Christian S. Jensen DBS – Transactions March 20, 2020 47 / 86

DBS – Transactions

Concurrency control

Lock-based synchronization

Problems with late unlocking

Conclusion: Let’s delay unlocking until the end of the transaction.

schedule S8

T17 T18

lock X(B)
read(B, b)
b ← b - 50
write(B, b)

lock S(A)
read(A, a)

.
unlock(B) unlock(A)

Is that a good conclusion?

Christian S. Jensen DBS – Transactions March 20, 2020 47 / 86

DBS – Transactions

Concurrency control

Lock-based synchronization

Problems with late unlocking

Conclusion: Let’s delay unlocking until the end of the transaction.

schedule S8

T17 T18

lock X(B)
read(B, b)
b ← b - 50
write(B, b)

lock S(A)
read(A, a)

.
unlock(B) unlock(A)

Late unlocking avoids non-serializable schedules.
But it increases the chances of deadlocks.

Learn to live with it!

Christian S. Jensen DBS – Transactions March 20, 2020 47 / 86

DBS – Transactions

Concurrency control

Lock-based synchronization

Problems with late unlocking

Conclusion: Let’s delay unlocking until the end of the transaction.

schedule S8

T17 T18

lock X(B)
read(B, b)
b ← b - 50
write(B, b)

lock S(A)
read(A, a)

.
unlock(B) unlock(A)

Late unlocking avoids non-serializable schedules.
But it increases the chances of deadlocks.

Learn to live with it!
Christian S. Jensen DBS – Transactions March 20, 2020 47 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

Outline

3 Concurrency control
Lock-based synchronization
Two-phase locking (2PL)
Lock conversion
Deadlock detection
Deadlock prevention

Christian S. Jensen DBS – Transactions March 20, 2020 47 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

The Two-Phase Locking (2PL) protocol

First phase (growing phase):

Transaction may request locks.
Transaction may not release locks.

Second phase (shrinking phase):

Transaction may not request locks.
Transaction may release locks.

When the first lock is released,
the transaction moves from
the first phase to the second
phase.

time

no of locks

growing shrinking

Christian S. Jensen DBS – Transactions March 20, 2020 48 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

The Two-Phase Locking (2PL) protocol

First phase (growing phase):

Transaction may request locks.
Transaction may not release locks.

Second phase (shrinking phase):

Transaction may not request locks.
Transaction may release locks.

When the first lock is released,
the transaction moves from
the first phase to the second
phase.

time

no of locks

growing shrinking

Christian S. Jensen DBS – Transactions March 20, 2020 48 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

2PL: yes or no?

schedule SA

T1

lock X(A)
lock X(B)
lock X(C)
unlock(A)
unlock(C)
unlock(B)

yes

schedule SB

T2 T3

lock X(A)
lock X(B)
lock X(C)
unlock(B)

lock X(B)
unlock(C)
unlock(A)

unlock(B)

yes

schedule SC

T4 T5

lock X(A)
lock X(B)
lock X(C)
unlock(C)
unlock(B)

unlock(A)

yes

schedule SD

T6

lock X(A)
lock X(B)
unlock(B)
lock X(C)
unlock(A)
unlock(C)

no

Christian S. Jensen DBS – Transactions March 20, 2020 49 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

2PL: yes or no?

schedule SA

T1

lock X(A)
lock X(B)
lock X(C)
unlock(A)
unlock(C)
unlock(B)

yes

schedule SB

T2 T3

lock X(A)
lock X(B)
lock X(C)
unlock(B)

lock X(B)
unlock(C)
unlock(A)

unlock(B)

yes

schedule SC

T4 T5

lock X(A)
lock X(B)
lock X(C)
unlock(C)
unlock(B)

unlock(A)

yes

schedule SD

T6

lock X(A)
lock X(B)
unlock(B)
lock X(C)
unlock(A)
unlock(C)

no

Christian S. Jensen DBS – Transactions March 20, 2020 49 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

2PL: yes or no?

schedule SA

T1

lock X(A)
lock X(B)
lock X(C)
unlock(A)
unlock(C)
unlock(B)

yes

schedule SB

T2 T3

lock X(A)
lock X(B)
lock X(C)
unlock(B)

lock X(B)
unlock(C)
unlock(A)

unlock(B)

yes

schedule SC

T4 T5

lock X(A)
lock X(B)
lock X(C)
unlock(C)
unlock(B)

unlock(A)

yes

schedule SD

T6

lock X(A)
lock X(B)
unlock(B)
lock X(C)
unlock(A)
unlock(C)

no

Christian S. Jensen DBS – Transactions March 20, 2020 49 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

2PL: yes or no?

schedule SA

T1

lock X(A)
lock X(B)
lock X(C)
unlock(A)
unlock(C)
unlock(B)

yes

schedule SB

T2 T3

lock X(A)
lock X(B)
lock X(C)
unlock(B)

lock X(B)
unlock(C)
unlock(A)

unlock(B)

yes

schedule SC

T4 T5

lock X(A)
lock X(B)
lock X(C)
unlock(C)
unlock(B)

unlock(A)

yes

schedule SD

T6

lock X(A)
lock X(B)
unlock(B)
lock X(C)
unlock(A)
unlock(C)

no

Christian S. Jensen DBS – Transactions March 20, 2020 49 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

2PL: yes or no?

schedule SA

T1

lock X(A)
lock X(B)
lock X(C)
unlock(A)
unlock(C)
unlock(B)

yes

schedule SB

T2 T3

lock X(A)
lock X(B)
lock X(C)
unlock(B)

lock X(B)
unlock(C)
unlock(A)

unlock(B)

yes

schedule SC

T4 T5

lock X(A)
lock X(B)
lock X(C)
unlock(C)
unlock(B)

unlock(A)

yes

schedule SD

T6

lock X(A)
lock X(B)
unlock(B)
lock X(C)
unlock(A)
unlock(C)

no

Christian S. Jensen DBS – Transactions March 20, 2020 49 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

2PL: yes or no?

schedule SA

T1

lock X(A)
lock X(B)
lock X(C)
unlock(A)
unlock(C)
unlock(B)

yes

schedule SB

T2 T3

lock X(A)
lock X(B)
lock X(C)
unlock(B)

lock X(B)
unlock(C)
unlock(A)

unlock(B)

yes

schedule SC

T4 T5

lock X(A)
lock X(B)
lock X(C)
unlock(C)
unlock(B)

unlock(A)

yes

schedule SD

T6

lock X(A)
lock X(B)
unlock(B)
lock X(C)
unlock(A)
unlock(C)

no

Christian S. Jensen DBS – Transactions March 20, 2020 49 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

2PL: yes or no?

schedule SA

T1

lock X(A)
lock X(B)
lock X(C)
unlock(A)
unlock(C)
unlock(B)

yes

schedule SB

T2 T3

lock X(A)
lock X(B)
lock X(C)
unlock(B)

lock X(B)
unlock(C)
unlock(A)

unlock(B)

yes

schedule SC

T4 T5

lock X(A)
lock X(B)
lock X(C)
unlock(C)
unlock(B)

unlock(A)

yes

schedule SD

T6

lock X(A)
lock X(B)
unlock(B)
lock X(C)
unlock(A)
unlock(C)

no

Christian S. Jensen DBS – Transactions March 20, 2020 49 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

2PL: yes or no?

schedule SA

T1

lock X(A)
lock X(B)
lock X(C)
unlock(A)
unlock(C)
unlock(B)

yes

schedule SB

T2 T3

lock X(A)
lock X(B)
lock X(C)
unlock(B)

lock X(B)
unlock(C)
unlock(A)

unlock(B)

yes

schedule SC

T4 T5

lock X(A)
lock X(B)
lock X(C)
unlock(C)
unlock(B)

unlock(A)

yes

schedule SD

T6

lock X(A)
lock X(B)
unlock(B)
lock X(C)
unlock(A)
unlock(C)

no

Christian S. Jensen DBS – Transactions March 20, 2020 49 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

Characteristics of the 2PL protocol

2PL produces only serializable schedules

It ensures conflict serializability
2PL produces a subset of all possible serializable schedules

2PL does not prevent deadlocks

2PL does not prevent cascading rollbacks

“Dirty” reads are possible (reading from non-committed transactions)

Christian S. Jensen DBS – Transactions March 20, 2020 50 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

Cascading rollbacks

One aborted transaction can cause other transactions to abort.

schedule S11

T22 T23 T24

lock X(A)
lock X(B)
unlock(A)

lock X(A)
unlock(A)

lock X(A)
abort

schedule S11′

T22′ T23′ T24′

lock X(A)
lock X(B)
unlock(A)

commit
lock X(A)
unlock(A)

commit
lock X(A)

These schedules use two-phase locking

When T22 aborts ⇒ T23 and T24 also have to abort

How to eliminate these cascading rollbacks?

Don’t let transactions read uncommitted data: problem fixed in S11′

Christian S. Jensen DBS – Transactions March 20, 2020 51 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

Cascading rollbacks

One aborted transaction can cause other transactions to abort.

schedule S11

T22 T23 T24

lock X(A)
lock X(B)
unlock(A)

lock X(A)
unlock(A)

lock X(A)
abort

schedule S11′

T22′ T23′ T24′

lock X(A)
lock X(B)
unlock(A)

commit
lock X(A)
unlock(A)

commit
lock X(A)

These schedules use two-phase locking

When T22 aborts ⇒ T23 and T24 also have to abort

How to eliminate these cascading rollbacks?

Don’t let transactions read uncommitted data: problem fixed in S11′

Christian S. Jensen DBS – Transactions March 20, 2020 51 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

Cascading rollbacks

One aborted transaction can cause other transactions to abort.

schedule S11

T22 T23 T24

lock X(A)
lock X(B)
unlock(A)

lock X(A)
unlock(A)

lock X(A)
abort

schedule S11′

T22′ T23′ T24′

lock X(A)
lock X(B)
unlock(A)

commit
lock X(A)
unlock(A)

commit
lock X(A)

These schedules use two-phase locking

When T22 aborts ⇒ T23 and T24 also have to abort

How to eliminate these cascading rollbacks?
Don’t let transactions read uncommitted data: problem fixed in S11′

Christian S. Jensen DBS – Transactions March 20, 2020 51 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

Strict and rigorous two phase locking

Strict 2PL

Exclusive locks are not released before the transaction commits

Prevents “dirty reads“

Rigorous 2PL:

All locks are released after commit time

Transactions can be serialized in the order they commit

Advantage:
no cascading rollbacks

Disadvantage:
loss of potential concurrency

Christian S. Jensen DBS – Transactions March 20, 2020 52 / 86

DBS – Transactions

Concurrency control

Two-phase locking (2PL)

Overview: 2PL protocols

plain

time

no of locks

commit

strict

time

no of locks

commit

rigorous

time

no of locks

commit

Christian S. Jensen DBS – Transactions March 20, 2020 53 / 86

DBS – Transactions

Concurrency control

Lock conversion

Lock conversion

Goal: Apply 2PL but allow for a higher degree of concurrency

First phase

Acquire an S-lock on a data item
Acquire an X-lock on a data item
Convert (upgrade) an S-lock to an X-lock

Second phase

Release an S-lock
Release an X-lock
Convert (downgrade) an X-lock to an S-lock

This protocol still ensures serializability

It relies on the application programmer to insert the appropriate locks

Christian S. Jensen DBS – Transactions March 20, 2020 54 / 86

DBS – Transactions

Concurrency control

Lock conversion

Plain, strict, or rigorous 2PL?

schedule S1

T1

lock S(A)
lock S(B)
lock X(B)
lock S(C)
unlock(A)
unlock(C)

commit

strict

schedule S2

T2

lock S(A)
lock S(B)
lock X(B)

commit

rigorous

schedule S3

T3

lock S(A)
lock S(B)
lock X(B)
unlock(B)
lock S(C)
unlock(A)

commit

not two phase

Christian S. Jensen DBS – Transactions March 20, 2020 55 / 86

DBS – Transactions

Concurrency control

Lock conversion

Plain, strict, or rigorous 2PL?

schedule S1

T1

lock S(A)
lock S(B)
lock X(B)
lock S(C)
unlock(A)
unlock(C)

commit

strict

schedule S2

T2

lock S(A)
lock S(B)
lock X(B)

commit

rigorous

schedule S3

T3

lock S(A)
lock S(B)
lock X(B)
unlock(B)
lock S(C)
unlock(A)

commit

not two phase

Christian S. Jensen DBS – Transactions March 20, 2020 55 / 86

DBS – Transactions

Concurrency control

Lock conversion

Plain, strict, or rigorous 2PL?

schedule S1

T1

lock S(A)
lock S(B)
lock X(B)
lock S(C)
unlock(A)
unlock(C)

commit

strict

schedule S2

T2

lock S(A)
lock S(B)
lock X(B)

commit

rigorous

schedule S3

T3

lock S(A)
lock S(B)
lock X(B)
unlock(B)
lock S(C)
unlock(A)

commit

not two phase

Christian S. Jensen DBS – Transactions March 20, 2020 55 / 86

DBS – Transactions

Concurrency control

Lock conversion

Plain, strict, or rigorous 2PL?

schedule S1

T1

lock S(A)
lock S(B)
lock X(B)
lock S(C)
unlock(A)
unlock(C)

commit

strict

schedule S2

T2

lock S(A)
lock S(B)
lock X(B)

commit

rigorous

schedule S3

T3

lock S(A)
lock S(B)
lock X(B)
unlock(B)
lock S(C)
unlock(A)

commit

not two phase

Christian S. Jensen DBS – Transactions March 20, 2020 55 / 86

DBS – Transactions

Concurrency control

Lock conversion

Plain, strict, or rigorous 2PL?

schedule S1

T1

lock S(A)
lock S(B)
lock X(B)
lock S(C)
unlock(A)
unlock(C)

commit

strict

schedule S2

T2

lock S(A)
lock S(B)
lock X(B)

commit

rigorous

schedule S3

T3

lock S(A)
lock S(B)
lock X(B)
unlock(B)
lock S(C)
unlock(A)

commit

not two phase

Christian S. Jensen DBS – Transactions March 20, 2020 55 / 86

DBS – Transactions

Concurrency control

Lock conversion

Plain, strict, or rigorous 2PL?

schedule S1

T1

lock S(A)
lock S(B)
lock X(B)
lock S(C)
unlock(A)
unlock(C)

commit

strict

schedule S2

T2

lock S(A)
lock S(B)
lock X(B)

commit

rigorous

schedule S3

T3

lock S(A)
lock S(B)
lock X(B)
unlock(B)
lock S(C)
unlock(A)

commit

not two phase

Christian S. Jensen DBS – Transactions March 20, 2020 55 / 86

DBS – Transactions

Concurrency control

Lock conversion

Overview of 2PL schedules

serial schedules

rigorous 2PL schedules
strict 2PL schedules

two phase locking schedules
conflict serializable schedules

All schedules

Christian S. Jensen DBS – Transactions March 20, 2020 56 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Outline

3 Concurrency control
Lock-based synchronization
Two-phase locking (2PL)
Lock conversion
Deadlock detection
Deadlock prevention

Christian S. Jensen DBS – Transactions March 20, 2020 56 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Deadlocks

2PL does not prevent deadlocks

T1 T2

lock X(A)
lock S(B)

read(B)
read(A)
write(A)

lock X(B) T1 needs to wait for T2

lock S(A) T2 needs to wait for T1

. ⇒ deadlock

Solutions

detection and recovery

prevention

timeout

Christian S. Jensen DBS – Transactions March 20, 2020 57 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Deadlocks

2PL does not prevent deadlocks

T1 T2

lock X(A)
lock S(B)

read(B)
read(A)
write(A)

lock X(B) T1 needs to wait for T2

lock S(A) T2 needs to wait for T1

. ⇒ deadlock

Solutions

detection and recovery

prevention

timeout

Christian S. Jensen DBS – Transactions March 20, 2020 57 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Deadlock detection

Create a “Wait-for graph” and check for cycles

One node for each active transaction Ti

Edge Ti → Tj if Ti waits for the release of locks by Tj

A deadlock exists if the wait-for graph has a cycle

Christian S. Jensen DBS – Transactions March 20, 2020 58 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Deadlock detection

If a deadlock is detected

Select an appropriate victim

Abort the victim and release its locks

schedule S8

T17 T18

lock X(B)
read(B, b)
b ← b - 50
write(B, b)

lock S(A)
read(A, a)
lock S(B)

lock X(A)

T17 T18

Christian S. Jensen DBS – Transactions March 20, 2020 59 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Deadlock detection example
schedule SA

T1 T2 T3 T4

lock X(A)
lock X(B)
lock X(C)

lock X(B)
lock X(D)

lock X(E)
lock X(D)

lock X(A)
lock X(E)

Cycle between T1, T4, and T2

⇒ deadlock detected

Rollback of one or multiple involved transactions
to release the deadlock

T1 T2

T3 T4

E

D

B A

Christian S. Jensen DBS – Transactions March 20, 2020 60 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Deadlock detection example
schedule SA

T1 T2 T3 T4

lock X(A)
lock X(B)
lock X(C)

lock X(B)
lock X(D)

lock X(E)
lock X(D)

lock X(A)
lock X(E)

Cycle between T1, T4, and T2

⇒ deadlock detected

Rollback of one or multiple involved transactions
to release the deadlock

T1 T2

T3 T4

E

D

B A

Christian S. Jensen DBS – Transactions March 20, 2020 60 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Deadlock detection example
schedule SA

T1 T2 T3 T4

lock X(A)
lock X(B)
lock X(C)

lock X(B)
lock X(D)

lock X(E)
lock X(D)

lock X(A)
lock X(E)

Cycle between T1, T4, and T2

⇒ deadlock detected

Rollback of one or multiple involved transactions
to release the deadlock

T1 T2

T3 T4

E

D

B A

Christian S. Jensen DBS – Transactions March 20, 2020 60 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Rollback candidates

Choosing a good victim transaction

Rollback of one or more transactions that are involved in the cycle

The latest (minimization of rollback effort)

The one holding the most locks (maximization of released resources)

Prevent that always the same victim is chosen (starvation)

“rollback counter”
→ above a certain threshold: no more rollbacks to break deadlocks

Christian S. Jensen DBS – Transactions March 20, 2020 61 / 86

DBS – Transactions

Concurrency control

Deadlock detection

Rollback candidates

Choosing a good victim transaction

Rollback of one or more transactions that are involved in the cycle

The latest (minimization of rollback effort)

The one holding the most locks (maximization of released resources)

Prevent that always the same victim is chosen (starvation)

“rollback counter”
→ above a certain threshold: no more rollbacks to break deadlocks

Christian S. Jensen DBS – Transactions March 20, 2020 61 / 86

DBS – Transactions

Concurrency control

Deadlock prevention

Outline

3 Concurrency control
Lock-based synchronization
Two-phase locking (2PL)
Lock conversion
Deadlock detection
Deadlock prevention

Christian S. Jensen DBS – Transactions March 20, 2020 61 / 86

DBS – Transactions

Concurrency control

Deadlock prevention

Conservative 2PL protocol

2PL as well as strict and rigorous 2PL do not prevent deadlocks

Additional requirement:
All locks (shared and exclusive) are obtained right in the beginning of
a transaction

conservative strict 2PL

time

no of locks

commit

conservative rigorous 2PL

time

no of locks

commit

Only applicable for a few applications

Christian S. Jensen DBS – Transactions March 20, 2020 62 / 86

DBS – Transactions

Concurrency control

Summary: concurrency control

Many concurrency control protocols have been developed

Main goal: allowing only serializable, recoverable, and cascadeless
schedules
Two-phase locking
Most relational DBMS’s use rigorous two-phase locking

Deadlock detection (wait-for graph) and prevention (conservative
2PL)

Serializability vs. concurrency

Christian S. Jensen DBS – Transactions March 20, 2020 63 / 86

DBS – Transactions

Recovery

Learning goals

Learning goals: recovery

Understanding basic logging algorithms

Understanding the importance of atomicity and durability

Motivation

Communicating to the user that a transaction was successful without
guaranteeing that the effect is permanent can easily become
expensive for commercial applications.

We want to preserve consistency and availability even in the case of
failures.

Christian S. Jensen DBS – Transactions March 20, 2020 64 / 86

DBS – Transactions

Recovery

Outline

4 Recovery
Failure classification
Data storage
Log entries
Log-based recovery

Christian S. Jensen DBS – Transactions March 20, 2020 64 / 86

DBS – Transactions

Recovery

Recovery

“Problems” with transactions

Atomicity

Transactions may abort (rollback)

Durability

What if a DBMS crashes?

The DBMS ensures that a transaction

either completes and has a permanent result (committed transaction)
or

has no effect at all on the database (aborted transaction).

The role of the recovery component is to ensure atomicity and durability
of transactions in the presence of system failures.

Christian S. Jensen DBS – Transactions March 20, 2020 65 / 86

DBS – Transactions

Recovery

Recovery

“Problems” with transactions

Atomicity

Transactions may abort (rollback)

Durability

What if a DBMS crashes?

The DBMS ensures that a transaction

either completes and has a permanent result (committed transaction)
or

has no effect at all on the database (aborted transaction).

The role of the recovery component is to ensure atomicity and durability
of transactions in the presence of system failures.

Christian S. Jensen DBS – Transactions March 20, 2020 65 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is not yet written to the hard disk

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens when there is a blackout?

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 66 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is not yet written to the hard disk

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens when there is a blackout?

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 66 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is partially written to the hard disk

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens when there is a blackout?

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 67 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is partially written to the hard disk

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens when there is a blackout?

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 67 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is completely written to the hard disk

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens if there is a hardware failure
⇒ loss of a hard disk

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 68 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is completely written to the hard disk

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens if there is a hardware failure
⇒ loss of a hard disk

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 68 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is completely written to multiple hard disks

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens if there is a fire, flood, earthquake, or. . . ?
⇒ all hard disks are lost

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 69 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is completely written to multiple hard disks

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens if there is a fire, flood, earthquake, or. . . ?
⇒ all hard disks are lost

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 69 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is completely written to multiple hard disks and the disks are
located at multiple geographically distributed computing centers

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens if there is a fire, flood, earthquake, or. . . ? at all
computing centers at the same time?
⇒ all computing centers and all hard disks are lost

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 70 / 86

DBS – Transactions

Recovery

Failure classification

How can durability be guaranteed?

A transaction changes data in main memory

Data is completely written to multiple hard disks and the disks are
located at multiple geographically distributed computing centers

Transaction commits

User assumes that the transaction was successfully completed and all its
changes are persistently stored in the database.

What happens if there is a fire, flood, earthquake, or. . . ? at all
computing centers at the same time?
⇒ all computing centers and all hard disks are lost

What data is in the database?

Christian S. Jensen DBS – Transactions March 20, 2020 70 / 86

DBS – Transactions

Recovery

Failure classification

Durability

Durability is relative and depends on the number of copies and the
geographical location.

Guarantees only possible if

we first update the copies and
notify the user afterwards that a transaction’s commit was successful

We hence assume that the WAL (Write Ahead Logging) rule is satisfied.

Variations of applying the WAL rule:

Log-based recovery

Full redundancy: mirroring/shadowing all data on multiple computers
(disks, computing centers) that redundantly do the same

Christian S. Jensen DBS – Transactions March 20, 2020 71 / 86

DBS – Transactions

Recovery

Failure classification

Durability

Durability is relative and depends on the number of copies and the
geographical location.

Guarantees only possible if

we first update the copies and
notify the user afterwards that a transaction’s commit was successful

We hence assume that the WAL (Write Ahead Logging) rule is satisfied.

Variations of applying the WAL rule:

Log-based recovery

Full redundancy: mirroring/shadowing all data on multiple computers
(disks, computing centers) that redundantly do the same

Christian S. Jensen DBS – Transactions March 20, 2020 71 / 86

DBS – Transactions

Recovery

Failure classification

Durability

Durability is relative and depends on the number of copies and the
geographical location.

Guarantees only possible if

we first update the copies and
notify the user afterwards that a transaction’s commit was successful

We hence assume that the WAL (Write Ahead Logging) rule is satisfied.

Variations of applying the WAL rule:

Log-based recovery

Full redundancy: mirroring/shadowing all data on multiple computers
(disks, computing centers) that redundantly do the same

Christian S. Jensen DBS – Transactions March 20, 2020 71 / 86

DBS – Transactions

Recovery

Failure classification

Failure classification

Transaction failure (failure of a not yet committed transaction)

Undo the changes of the transaction

System crash (failure with main memory loss)

Changes of committed transactions must be preserved

Changes of all non-committed transactions need to be undone

Disk failure (failure with hard disk loss)

Recovery based on archives/dumps

Christian S. Jensen DBS – Transactions March 20, 2020 72 / 86

DBS – Transactions

Recovery

Failure classification

Failure classification

Transaction failure (failure of a not yet committed transaction)

Undo the changes of the transaction

System crash (failure with main memory loss)

Changes of committed transactions must be preserved

Changes of all non-committed transactions need to be undone

Disk failure (failure with hard disk loss)

Recovery based on archives/dumps

Christian S. Jensen DBS – Transactions March 20, 2020 72 / 86

DBS – Transactions

Recovery

Failure classification

Failure classification

Transaction failure (failure of a not yet committed transaction)

Undo the changes of the transaction

System crash (failure with main memory loss)

Changes of committed transactions must be preserved

Changes of all non-committed transactions need to be undone

Disk failure (failure with hard disk loss)

Recovery based on archives/dumps

Christian S. Jensen DBS – Transactions March 20, 2020 72 / 86

DBS – Transactions

Recovery

Data storage

Outline

4 Recovery
Failure classification
Data storage
Log entries
Log-based recovery

Christian S. Jensen DBS – Transactions March 20, 2020 72 / 86

DBS – Transactions

Recovery

Data storage

Two-level storage hierarchy

Data is organized in pages and blocks

Volatile storage (main memory buffer)

Non-volatile storage (hard disk)

Stable storage (RAIDS, remote backups,. . .)

Christian S. Jensen DBS – Transactions March 20, 2020 73 / 86

DBS – Transactions

Recovery

Data storage

Two-level storage hierarchy

Data is organized in pages and blocks

Volatile storage (main memory buffer)

Non-volatile storage (hard disk)

Stable storage (RAIDS, remote backups,. . .)

Christian S. Jensen DBS – Transactions March 20, 2020 73 / 86

DBS – Transactions

Recovery

Data storage

Two-level storage hierarchy

Data is organized in pages and blocks

Volatile storage (main memory buffer)

Non-volatile storage (hard disk)

Stable storage (RAIDS, remote backups,. . .)

Christian S. Jensen DBS – Transactions March 20, 2020 73 / 86

DBS – Transactions

Recovery

Data storage

Movement of values

A B

C D

persistent storage

A Csystem buffer

A C

application1 buffer

A

application2 buffer

Input(C)
Output(A)

Write(A, a) Read(A, a)Read(C, c)

Christian S. Jensen DBS – Transactions March 20, 2020 74 / 86

DBS – Transactions

Recovery

Data storage

Storage operations

Transactions access and update the database

Operations for moving blocks with data items between disk and main
memory (the system buffer)

Input(Q)
transfer block containing data item Q to main memory
Output(Q)
transfer block containing Q to disk & replace

Operations for moving values between data items and application
variables

read(Q,q)
assigns the value of data item Q to variable q
write(Q,q)
assigns the value of variable q to data item Q

Christian S. Jensen DBS – Transactions March 20, 2020 75 / 86

DBS – Transactions

Recovery

Data storage

Storage operations

Transactions access and update the database

Operations for moving blocks with data items between disk and main
memory (the system buffer)

Input(Q)
transfer block containing data item Q to main memory
Output(Q)
transfer block containing Q to disk & replace

Operations for moving values between data items and application
variables

read(Q,q)
assigns the value of data item Q to variable q
write(Q,q)
assigns the value of variable q to data item Q

Christian S. Jensen DBS – Transactions March 20, 2020 75 / 86

DBS – Transactions

Recovery

Log entries

Outline

4 Recovery
Failure classification
Data storage
Log entries
Log-based recovery

Christian S. Jensen DBS – Transactions March 20, 2020 75 / 86

DBS – Transactions

Recovery

Log entries

The WAL rule for log-based recovery

WAL (Write Ahead Logging)

Before a transaction enters the commit state, “all its” log entries
have to be written to stable storage, incl. the commit log entry

Before a modified page (or block) in main memory can be written to
the database (non-volatile storage), “all its” log entries have to be
written to stable storage

Christian S. Jensen DBS – Transactions March 20, 2020 76 / 86

DBS – Transactions

Recovery

Log entries

Logging

During normal operation

When starting, a transaction T registers itself in the log: [T start]

When modifying data item X by write(X, x)
1 Add log entry with

[T, X, V-old, V-new]
transaction’s ID (i.e., T)
data item name (i.e., X)
old value of the item
new value of the item

2 Write the new value of X

The buffer manager asynchronously outputs the value to disk later

When finishing, a transaction T appends [T commit] to the log,
T then commits
The transaction commits precisely when the commit entry (after all
previous entries for this transaction) is output to the log!

Christian S. Jensen DBS – Transactions March 20, 2020 77 / 86

DBS – Transactions

Recovery

Log entries

Logging

During normal operation

When starting, a transaction T registers itself in the log: [T start]

When modifying data item X by write(X, x)
1 Add log entry with

[T, X, V-old, V-new]
transaction’s ID (i.e., T)
data item name (i.e., X)
old value of the item
new value of the item

2 Write the new value of X

The buffer manager asynchronously outputs the value to disk later

When finishing, a transaction T appends [T commit] to the log,
T then commits
The transaction commits precisely when the commit entry (after all
previous entries for this transaction) is output to the log!

Christian S. Jensen DBS – Transactions March 20, 2020 77 / 86

DBS – Transactions

Recovery

Log entries

Logging

During normal operation

When starting, a transaction T registers itself in the log: [T start]

When modifying data item X by write(X, x)
1 Add log entry with

[T, X, V-old, V-new]
transaction’s ID (i.e., T)
data item name (i.e., X)
old value of the item
new value of the item

2 Write the new value of X

The buffer manager asynchronously outputs the value to disk later

When finishing, a transaction T appends [T commit] to the log,
T then commits
The transaction commits precisely when the commit entry (after all
previous entries for this transaction) is output to the log!

Christian S. Jensen DBS – Transactions March 20, 2020 77 / 86

DBS – Transactions

Recovery

Log entries

Logging

During normal operation

When starting, a transaction T registers itself in the log: [T start]

When modifying data item X by write(X, x)
1 Add log entry with

[T, X, V-old, V-new]
transaction’s ID (i.e., T)
data item name (i.e., X)
old value of the item
new value of the item

2 Write the new value of X

The buffer manager asynchronously outputs the value to disk later

When finishing, a transaction T appends [T commit] to the log,
T then commits
The transaction commits precisely when the commit entry (after all
previous entries for this transaction) is output to the log!

Christian S. Jensen DBS – Transactions March 20, 2020 77 / 86

DBS – Transactions

Recovery

Log entries

Logging

During normal operation

When starting, a transaction T registers itself in the log: [T start]

When modifying data item X by write(X, x)
1 Add log entry with

[T, X, V-old, V-new]
transaction’s ID (i.e., T)
data item name (i.e., X)
old value of the item
new value of the item

2 Write the new value of X

The buffer manager asynchronously outputs the value to disk later

When finishing, a transaction T appends [T commit] to the log,
T then commits

The transaction commits precisely when the commit entry (after all
previous entries for this transaction) is output to the log!

Christian S. Jensen DBS – Transactions March 20, 2020 77 / 86

DBS – Transactions

Recovery

Log entries

Logging

During normal operation

When starting, a transaction T registers itself in the log: [T start]

When modifying data item X by write(X, x)
1 Add log entry with

[T, X, V-old, V-new]
transaction’s ID (i.e., T)
data item name (i.e., X)
old value of the item
new value of the item

2 Write the new value of X

The buffer manager asynchronously outputs the value to disk later

When finishing, a transaction T appends [T commit] to the log,
T then commits
The transaction commits precisely when the commit entry (after all
previous entries for this transaction) is output to the log!

Christian S. Jensen DBS – Transactions March 20, 2020 77 / 86

DBS – Transactions

Recovery

Log entries

Structure of a log entry (log record)

[TID, DID, old, new]

TID identifier of the transaction that caused the update

DID data item identifier
location on disk (page, block, offset)

old value of the data item before the update

new value of the data item after the update

Additional entries

start Transaction TID has started [TID start]

commit Transaction TID has committed [TID commit]

abort Transaction TID has aborted [TID abort]

Christian S. Jensen DBS – Transactions March 20, 2020 78 / 86

DBS – Transactions

Recovery

Log entries

Structure of a log entry (log record)

[TID, DID, old, new]

TID identifier of the transaction that caused the update

DID data item identifier
location on disk (page, block, offset)

old value of the data item before the update

new value of the data item after the update

Additional entries

start Transaction TID has started [TID start]

commit Transaction TID has committed [TID commit]

abort Transaction TID has aborted [TID abort]

Christian S. Jensen DBS – Transactions March 20, 2020 78 / 86

DBS – Transactions

Recovery

Log entries

Log entry exampleschedule S1

T1 T2 T3

begin
read(B, b)

b ← b+100
write(B, b)

commit
begin

read(D, d)
d ← d+470
write(D, d)

commit
begin

read(D, d)
read(E, e)
d ← d-10

write(D, d)
e ← e-20

write(E, e)
commit

[TID, DID, old, new]

[T1 start]
[T1, B, 300, 400]
[T1 commit]
[T2 start]
[T2, D, 60, 530]
[T2 commit]
[T3 start]
[T3, D, 530, 520]
[T3, E, 70, 50]
[T3 commit]

Christian S. Jensen DBS – Transactions March 20, 2020 79 / 86

DBS – Transactions

Recovery

Log-based recovery

Outline

4 Recovery
Failure classification
Data storage
Log entries
Log-based recovery

Christian S. Jensen DBS – Transactions March 20, 2020 79 / 86

DBS – Transactions

Recovery

Log-based recovery

Log-based recovery

Operations to recover from failures

Redo: perform the changes to the database again

Undo: restore database to state prior to execution

time

T1

T2

T3

TF

system failure

What to do with the transactions?

time

T4

T5

TF

system failure

Redo T4

Undo T5

Christian S. Jensen DBS – Transactions March 20, 2020 80 / 86

DBS – Transactions

Recovery

Log-based recovery

Log-based recovery

Operations to recover from failures

Redo: perform the changes to the database again

Undo: restore database to state prior to execution

time

T1

T2

T3

TF

system failure

Redo T1 and T2

Undo T3

time

T4

T5

TF

system failure

Redo T4

Undo T5

Christian S. Jensen DBS – Transactions March 20, 2020 80 / 86

DBS – Transactions

Recovery

Log-based recovery

Recovery algorithm

To recover from a failure

Reproduce (redo) results for committed transactions

Undo changes of transactions that did not commit

Remarks

In a multitasking system, more than one transaction may need to be
undone.

If a system crashes during the recovery stage, the new recovery must
still give correct results (idempotence).

Christian S. Jensen DBS – Transactions March 20, 2020 81 / 86

DBS – Transactions

Recovery

Log-based recovery

Recovery algorithm

To recover from a failure

Reproduce (redo) results for committed transactions

Undo changes of transactions that did not commit

Remarks

In a multitasking system, more than one transaction may need to be
undone.

If a system crashes during the recovery stage, the new recovery must
still give correct results (idempotence).

Christian S. Jensen DBS – Transactions March 20, 2020 81 / 86

DBS – Transactions

Recovery

Log-based recovery

Log-based recovery

database

A 100

B 300

C 5

D 60

E 80

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

How would you use the log (systematically) to recover from the crash?

Christian S. Jensen DBS – Transactions March 20, 2020 82 / 86

DBS – Transactions

Recovery

Log-based recovery

The phases of recovery

1 Redo (repeat history)

Forward scan through the log
Repeat all updates in the same order as in the log file
Determine “undo” transactions

[Ti start] add Ti to the “undo list”
[Ti abort] or [Ti commit] remove Ti from the “undo list”

2 Undo (rollback) all transactions in the “undo list”

Backward scan through the log
Undo all updates of transactions in the “undo list” – create a
compensating log record
For a [Ti start] record of a transaction Ti in the “undo list”, add a [Ti

abort] record to the log file, remove Ti from the “undo list”
Stop, when “undo list” is empty

Christian S. Jensen DBS – Transactions March 20, 2020 83 / 86

DBS – Transactions

Recovery

Log-based recovery

The phases of recovery

1 Redo (repeat history)

Forward scan through the log
Repeat all updates in the same order as in the log file
Determine “undo” transactions

[Ti start] add Ti to the “undo list”
[Ti abort] or [Ti commit] remove Ti from the “undo list”

2 Undo (rollback) all transactions in the “undo list”

Backward scan through the log
Undo all updates of transactions in the “undo list” – create a
compensating log record
For a [Ti start] record of a transaction Ti in the “undo list”, add a [Ti

abort] record to the log file, remove Ti from the “undo list”
Stop, when “undo list” is empty

Christian S. Jensen DBS – Transactions March 20, 2020 83 / 86

DBS – Transactions

Recovery

Log-based recovery

Compensation log records

[TID, DID, value]

Created to undo (compensate) the changes of [TID, DID, value,
newValue]

Redo-only log record

Can also be used to rollback a transaction during normal operation

Christian S. Jensen DBS – Transactions March 20, 2020 84 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 300

C 5

D 60

E 80

undo list

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 300

C 5

D 60

E 80

undo list

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 300

C 5

D 60

E 80

undo list
{ T1 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 300

C 5

D 60

E 80

undo list
{ T1 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 400

C 5

D 60

E 80

undo list
{ T1 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 400

C 5

D 60

E 80

undo list
{ T1 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 400

C 10

D 60

E 80

undo list
{ T1 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 400

C 10

D 60

E 80

undo list
{ T1 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 400

C 10

D 60

E 80

undo list
{ T1, T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 400

C 10

D 60

E 80

undo list
{ T1, T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 400

C 10

D 60

E 480

undo list
{ T1, T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 100

B 400

C 10

D 60

E 480

undo list
{ T1, T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 560

B 400

C 10

D 60

E 480

undo list
{ T1, T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 560

B 400

C 10

D 60

E 480

undo list
{ T1, T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 560

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 560

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 570

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 570

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 1 (redo)

database

A 570

B 400

C 10

D 530

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 570

B 400

C 10

D 530

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 570

B 400

C 10

D 530

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 570

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]
[T2, D, 60]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 570

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]
[T2, D, 60]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 560

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]
[T2, D, 60]
[T2, A, 560]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 560

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]
[T2, D, 60]
[T2, A, 560]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 560

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]
[T2, D, 60]
[T2, A, 560]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 560

B 400

C 10

D 60

E 480

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]
[T2, D, 60]
[T2, A, 560]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 560

B 400

C 10

D 60

E 80

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]
[T2, D, 60]
[T2, A, 560]
[T2, E, 80]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 560

B 400

C 10

D 60

E 80

undo list
{ T2 }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]
[T2, D, 60]
[T2, A, 560]
[T2, E, 80]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Log-based recovery

Example

Phase 2 (undo)

database

A 560

B 400

C 10

D 60

E 80

undo list
{ }

log records

[T1 start]
[T1, B, 300, 400]
[T1, C, 5, 10]
[T2 start]
[T2, E, 80, 480]
[T1, A, 100, 560]
[T1 commit]
[T2, A, 560, 570]
[T2, D, 60, 530]
[T2, D, 60]
[T2, A, 560]
[T2, E, 80]
[T2 abort]

Christian S. Jensen DBS – Transactions March 20, 2020 85 / 86

DBS – Transactions

Recovery

Summary: recovery

Goal: ensuring atomicity and durability despite failures and crashes

Durability is relative

WAL rule

Log-based recovery

All changes need to be written into the log file
A transaction commits when the commit entry in the log is written

Christian S. Jensen DBS – Transactions March 20, 2020 86 / 86

	Transactions
	Characteristics
	Operations on transactions
	Guaranteeing ACID properties

	Schedules and serializability
	Schedules
	Conflict serializability
	Conflict graphs (precedence graphs)
	Recoverable and cascadeless schedules
	

	Concurrency control
	Lock-based synchronization
	Two-phase locking (2PL)
	Lock conversion
	Deadlock detection
	Deadlock prevention
	

	Recovery
	Failure classification
	Data storage
	Log entries
	Log-based recovery
	

