
DBS – Query Execution and Optimization

Database Systems
Query Execution and Optimization

Katja Hose

Department of Computer Science
Aalborg University
khose@cs.aau.dk

Spring 2020

Katja Hose DBS – Query Execution and Optimization Spring 2020 1 / 63



DBS – Query Execution and Optimization

Learning goals

Learning goals

Understand how selection statements are executed

Understand the basic join algorithms

Understand the basics of heuristic (logical) query optimization

Understand the basics of physical query optimization

Motivation

Understanding the basics of query processing and query optimization
are fundamental to database tuning

Katja Hose DBS – Query Execution and Optimization April 6, 2020 2 / 63



DBS – Query Execution and Optimization

Outline

1 Introduction
Query processing
Query optimization

2 Heuristic (logical) query optimization
Equivalences in relational algebra
Phases of logical query optimization

3 Operator implementations
Selection (access paths)
Join strategies

4 Cost-based (physical) query optimization
Selectivity and cardinality
Cost estimation
PostgreSQL

Katja Hose DBS – Query Execution and Optimization April 6, 2020 2 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Evaluation of an SQL statement

The clauses are specified in the
following order.

SELECT column(s)

FROM table list

WHERE condition

GROUP BY grouping column(s)

HAVING group condition

ORDER BY sort list

Katja Hose DBS – Query Execution and Optimization April 6, 2020 3 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Evaluation of an SQL statement

The clauses are specified in the
following order.

SELECT column(s)

FROM table list

WHERE condition

GROUP BY grouping column(s)

HAVING group condition

ORDER BY sort list

But the query is evaluated in a
different order

Cartesian product of tables in
the from clause

Predicates in the where clause

Grouped according to the group
by clause

Predicate in the having clause
applied to (eliminate) groups

Compute aggregation functions
for each remaining group

Projection on columns
enumerated in the select clause

Katja Hose DBS – Query Execution and Optimization April 6, 2020 3 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Evaluation of an SQL statement

The clauses are specified in the
following order.

SELECT column(s)

FROM table list

WHERE condition

GROUP BY grouping column(s)

HAVING group condition

ORDER BY sort list

But the query is evaluated in a
different order

Cartesian product of tables in
the from clause

Predicates in the where clause

Grouped according to the group
by clause

Predicate in the having clause
applied to (eliminate) groups

Compute aggregation functions
for each remaining group

Projection on columns
enumerated in the select clause

Katja Hose DBS – Query Execution and Optimization April 6, 2020 3 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Evaluation of an SQL statement

The clauses are specified in the
following order.

SELECT column(s)

FROM table list

WHERE condition

GROUP BY grouping column(s)

HAVING group condition

ORDER BY sort list

But the query is evaluated in a
different order

Cartesian product of tables in
the from clause

Predicates in the where clause

Grouped according to the group
by clause

Predicate in the having clause
applied to (eliminate) groups

Compute aggregation functions
for each remaining group

Projection on columns
enumerated in the select clause

Katja Hose DBS – Query Execution and Optimization April 6, 2020 3 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Evaluation of an SQL statement

The clauses are specified in the
following order.

SELECT column(s)

FROM table list

WHERE condition

GROUP BY grouping column(s)

HAVING group condition

ORDER BY sort list

But the query is evaluated in a
different order

Cartesian product of tables in
the from clause

Predicates in the where clause

Grouped according to the group
by clause

Predicate in the having clause
applied to (eliminate) groups

Compute aggregation functions
for each remaining group

Projection on columns
enumerated in the select clause

Katja Hose DBS – Query Execution and Optimization April 6, 2020 3 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Evaluation of an SQL statement

The clauses are specified in the
following order.

SELECT column(s)

FROM table list

WHERE condition

GROUP BY grouping column(s)

HAVING group condition

ORDER BY sort list

But the query is evaluated in a
different order

Cartesian product of tables in
the from clause

Predicates in the where clause

Grouped according to the group
by clause

Predicate in the having clause
applied to (eliminate) groups

Compute aggregation functions
for each remaining group

Projection on columns
enumerated in the select clause

Katja Hose DBS – Query Execution and Optimization April 6, 2020 3 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Evaluation of an SQL statement

The clauses are specified in the
following order.

SELECT column(s)

FROM table list

WHERE condition

GROUP BY grouping column(s)

HAVING group condition

ORDER BY sort list

But the query is evaluated in a
different order

Cartesian product of tables in
the from clause

Predicates in the where clause

Grouped according to the group
by clause

Predicate in the having clause
applied to (eliminate) groups

Compute aggregation functions
for each remaining group

Projection on columns
enumerated in the select clause

Katja Hose DBS – Query Execution and Optimization April 6, 2020 3 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Evaluation of an SQL statement

The clauses are specified in the
following order.

SELECT column(s)

FROM table list

WHERE condition

GROUP BY grouping column(s)

HAVING group condition

ORDER BY sort list

But the query is evaluated in a
different order

Cartesian product of tables in
the from clause

Predicates in the where clause

Grouped according to the group
by clause

Predicate in the having clause
applied to (eliminate) groups

Compute aggregation functions
for each remaining group

Projection on columns
enumerated in the select clause

Katja Hose DBS – Query Execution and Optimization April 6, 2020 3 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Evaluation of an SQL statement

The clauses are specified in the
following order.

SELECT column(s)

FROM table list

WHERE condition

GROUP BY grouping column(s)

HAVING group condition

ORDER BY sort list

SQL is declarative!

Katja Hose DBS – Query Execution and Optimization April 6, 2020 3 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Steps of query processing

query in a high-level language

scanning, parsing, and semantic analysis

query optimizer

code generator

runtime database processor

query result

intermediate query plan

execution plan

code to execute the query

Katja Hose DBS – Query Execution and Optimization April 6, 2020 4 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Parsing a query into an initial query plan

SELECT title
FROM professor, course
WHERE name=‘Socrates‘ AND

empID = taughtBy;

⇒

πtitle

σname=‘Socrates‘∧ empID=taughtBy

×

professor course

πtitle(σname=‘Socrates‘∧ empID=taughtBy(professor × course))

Katja Hose DBS – Query Execution and Optimization April 6, 2020 5 / 63



DBS – Query Execution and Optimization

Introduction

Query processing

Alternative query plan

SELECT title
FROM professor, course
WHERE name=‘Socrates‘ AND

empID = taughtBy;

⇒

πtitle

σempID=taughtBy

×

σname=‘Socrates‘ course

professor

πtitle(σempID=taughtBy(σname=‘Socrates‘professor × course))

Katja Hose DBS – Query Execution and Optimization April 6, 2020 6 / 63



DBS – Query Execution and Optimization

Introduction

Query optimization

Query optimization

Alternatives

Equivalent query execution plans

Algorithms to compute an algebra operation

Methods to access relations (indexes)

Although the result is equivalent, execution costs might be different.

Theory meets reality

It is not the task of the user to write queries “efficiently”, it is the task of
the query optimizer to execute them efficiently!

But in reality. . . optimizers are not perfect.

Katja Hose DBS – Query Execution and Optimization April 6, 2020 7 / 63



DBS – Query Execution and Optimization

Introduction

Query optimization

Query optimization

Alternatives

Equivalent query execution plans

Algorithms to compute an algebra operation

Methods to access relations (indexes)

Although the result is equivalent, execution costs might be different.

Theory meets reality

It is not the task of the user to write queries “efficiently”, it is the task of
the query optimizer to execute them efficiently!

But in reality. . . optimizers are not perfect.

Katja Hose DBS – Query Execution and Optimization April 6, 2020 7 / 63



DBS – Query Execution and Optimization

Introduction

Query optimization

Query optimization

Alternatives

Equivalent query execution plans

Algorithms to compute an algebra operation

Methods to access relations (indexes)

Although the result is equivalent, execution costs might be different.

Theory meets reality

It is not the task of the user to write queries “efficiently”, it is the task of
the query optimizer to execute them efficiently!

But in reality. . . optimizers are not perfect.

Katja Hose DBS – Query Execution and Optimization April 6, 2020 7 / 63



DBS – Query Execution and Optimization

Introduction

Query optimization

Query costs

Measures

Total elapsed time for answering a query (response time)

Many factors contribute to response time

Disk access
CPU costs
network communication
query load
parallel processing

Disk access most dominant

Block access time: seek time, rotation time
Transfer time

Katja Hose DBS – Query Execution and Optimization April 6, 2020 8 / 63



DBS – Query Execution and Optimization

Introduction

Query optimization

Query optimization

Logical query optimization

Relational algebra

Equivalence transformation

Heuristic optimization

Physical query optimization

Algorithms and implementations of operations

Cost model

Katja Hose DBS – Query Execution and Optimization April 6, 2020 9 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Outline

2 Heuristic (logical) query optimization
Equivalences in relational algebra
Phases of logical query optimization

Katja Hose DBS – Query Execution and Optimization April 6, 2020 9 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Logical query optimization

Logical query optimization

Foundation: algebraic equivalences

Algebraic equivalences span the potential search space

Given an initial algebraic expression:
apply algebraic equivalences to derive new equivalent algebraic
expressions

What is a good plan?

Difficult to compare plans without a cost function

⇒ logical query optimization relies on heuristics

Main goal of logical query optimization

Reduce the size of intermediate results

Katja Hose DBS – Query Execution and Optimization April 6, 2020 10 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Logical query optimization

Logical query optimization

Foundation: algebraic equivalences

Algebraic equivalences span the potential search space

Given an initial algebraic expression:
apply algebraic equivalences to derive new equivalent algebraic
expressions

What is a good plan?

Difficult to compare plans without a cost function

⇒ logical query optimization relies on heuristics

Main goal of logical query optimization

Reduce the size of intermediate results

Katja Hose DBS – Query Execution and Optimization April 6, 2020 10 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Logical query optimization

Logical query optimization

Foundation: algebraic equivalences

Algebraic equivalences span the potential search space

Given an initial algebraic expression:
apply algebraic equivalences to derive new equivalent algebraic
expressions

What is a good plan?

Difficult to compare plans without a cost function

⇒ logical query optimization relies on heuristics

Main goal of logical query optimization

Reduce the size of intermediate results

Katja Hose DBS – Query Execution and Optimization April 6, 2020 10 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Equivalences in relational algebra

Equivalences

Break up conjunctions in selection predicates

σc1∧c2∧...∧cn(R) ≡ σc1(σc2(...(σcn(R))...))

σ is commutative

σc1(σc2(R)) ≡ σc2(σc1(R))

π cascades
If L1 ⊆ L2 ⊆ ... ⊆ Ln then

πL1(πL2(...(πLn(R))...)) ≡ πL1(R)

Katja Hose DBS – Query Execution and Optimization April 6, 2020 11 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Equivalences in relational algebra

Equivalences

Change the order of σ and π
If the selection involves only attributes A1, ..., An contained in the
projection list, the order of σ and π can be changed

πA1,...,An(σc(R)) ≡ σc(πA1,...,An(R))

∪,∩ and on are commutative

R onc S ≡ S onc R

Katja Hose DBS – Query Execution and Optimization April 6, 2020 12 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Equivalences in relational algebra

Equivalences

Change the order of σ and on
If the selection predicate c involves only attributes of relation R, the
order of σ and on can be changed

σc(R onj S) ≡ σc(R) onj S

If the selection predicate c is a conjunction of the form c1 ∧ c2 and c1
involves only attributes in R and c2 involves only attributes in S, then
we need to split c

σc(R onj S) ≡ σc1(R) onj σc2(S)

Katja Hose DBS – Query Execution and Optimization April 6, 2020 13 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Equivalences in relational algebra

Equivalences

Change the order of π and on
Given the projection list L = {A1, ..., An, B1, ..., Bm} where Ai
represents attributes in R and Bi attributes in S.
If the join predicate c only references attributes in L the following
reformulation holds

πL(R onc S) ≡ (πA1,...,An(R)) onc (πB1,...,Bm(S))

Katja Hose DBS – Query Execution and Optimization April 6, 2020 14 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Equivalences in relational algebra

Equivalences

on,∩,∪ (in separate) are all associative.
I.e., with Φ representing either of these operations, the following holds

(R Φ S) Φ T ≡ R Φ (S Φ T )

σ is distributive with ∩,∪,−.
I.e., with Φ representing either of these operations, the following holds

σc(R Φ S) ≡ (σc(R)) Φ (σc(S))

π is distributive with ∪

πc(R ∪ S) ≡ (πc(R)) ∪ (πc(S))

Katja Hose DBS – Query Execution and Optimization April 6, 2020 15 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Equivalences in relational algebra

Equivalences

Join and/or selection predicates can be reformulated based on De
Morgan’s laws

¬(c1 ∧ c2) ≡ (¬c1) ∨ (¬c2)

¬(c1 ∨ c2) ≡ (¬c1) ∧ (¬c2)

Combination of Cartesian product and selection
A Cartesian product followed by a selection whose predicate involves
predicates of both involved operands can be combined to a join

σθ(R× S) ≡ R onθ S

Remember the equivalent expressions for operators in relational algebra!

Katja Hose DBS – Query Execution and Optimization April 6, 2020 16 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Equivalences in relational algebra

Equivalences

Join and/or selection predicates can be reformulated based on De
Morgan’s laws

¬(c1 ∧ c2) ≡ (¬c1) ∨ (¬c2)

¬(c1 ∨ c2) ≡ (¬c1) ∧ (¬c2)

Combination of Cartesian product and selection
A Cartesian product followed by a selection whose predicate involves
predicates of both involved operands can be combined to a join

σθ(R× S) ≡ R onθ S

Remember the equivalent expressions for operators in relational algebra!

Katja Hose DBS – Query Execution and Optimization April 6, 2020 16 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Outline

2 Heuristic (logical) query optimization
Equivalences in relational algebra
Phases of logical query optimization

Katja Hose DBS – Query Execution and Optimization April 6, 2020 16 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Phases of logical query optimization

1 Break up conjunctive selection predicates

2 Push selections down

3 Introduce joins by combining selections and cross products

4 Determine join order
Heuristic: execute joins with input from selections before executing
other joins

5 Introduce and push down projections

Not always useful

Katja Hose DBS – Query Execution and Optimization April 6, 2020 17 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Phases of logical query optimization

1 Break up conjunctive selection predicates

2 Push selections down

3 Introduce joins by combining selections and cross products

4 Determine join order
Heuristic: execute joins with input from selections before executing
other joins

5 Introduce and push down projections
Not always useful

Katja Hose DBS – Query Execution and Optimization April 6, 2020 17 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Example

SELECT DISTINCT s.semester
FROM student s, takes t,

course c, professor p
WHERE p.name=‘Socrates‘ AND

c.taughtBy = p.empID AND
c.courseID = t.courseID AND
t.studID = s.studID;

⇒

πs.semester

σp.name=‘Socrates‘∧...

×

× p

× c

s t

Katja Hose DBS – Query Execution and Optimization April 6, 2020 18 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Break up selections

πs.semester

σp.name=‘Socrates‘∧...

×

× p

× c

s t

⇒

πs.semester

σp.empID=c.taughtBy

σc.courseID=t .courseID

σs.studID=t .studID

σp.name=‘Socrates‘

×

× p

× c

s t
Katja Hose DBS – Query Execution and Optimization April 6, 2020 19 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Push selections down
πs.semester

σp.empID=c.taughtBy

σc.courseID=t .courseID

σs.studID=t .studID

σp.name=‘Socrates‘

×

× p

× c

s t

⇒

πs.semester

σp.empID=c.taughtBy

×

σc.courseID=t .courseID

×

σp.name=‘Socrates‘

p
c

σs.studID=t .studID

×

s t
Katja Hose DBS – Query Execution and Optimization April 6, 2020 20 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Introduce joins

πs.semester

σp.empID=c.taughtBy

×

σc.courseID=t .courseID

×

σp.name=“Socrates

p

cσs.studID=t .studID

×

s t

⇒

πs.semester

onp.empID=c.taughtBy

onc.courseID=t .courseID σp.name=‘Socrates′

pons.studID=t .studID c

s t

Katja Hose DBS – Query Execution and Optimization April 6, 2020 21 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Determine join order

πs.semester

onp.empID=c.taughtBy

onc.courseID=t .courseID σp.name=‘Socrates′

p

ons.studID=t .studID c

s t

⇒

πs.semester

ons.studID=t .studID

onc.courseID=t .courseID s

onp.empID=c.taughtBy t

σp.name=‘Socrates‘ c

p

Katja Hose DBS – Query Execution and Optimization April 6, 2020 22 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Effect: reducing the sizes of intermediate results

πs.semester

onp.empID=c.taughtBy

onc.courseID=t .courseID σp.name=‘Socrates′

p

ons.studID=t .studID c

s t

4

13

13

⇒

πs.semester

ons.studID=t .studID

onc.courseID=t .courseID s

onp.empID=c.taughtBy t

σp.name=‘Socrates‘ c

p

4

4

3

1

Sophisticated result size estimation only possible in the presence of
statistics
→ cost-based optimization

Katja Hose DBS – Query Execution and Optimization April 6, 2020 23 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Introduce and push down projections

πs.semester

ons.studID=t .studID

onc.courseID=t .courseID s

onp.empID=c.taughtBy t

σp.name=‘Socrates‘ c

p

⇒

πs.semester

ons.studID=t .studID

onc.courseID=t .courseID s

onp.empID=c.taughtBy πt.studID,t.courseID

tπp.empID

σp.name=‘Socrates‘

πc.taughtBy,c.courseID

c

p

Katja Hose DBS – Query Execution and Optimization April 6, 2020 24 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Be careful

Find the titles of reserved films

SELECT DISTINCT title
FROM film F, reserved R
WHERE F.filmID = R.filmID

Katja Hose DBS – Query Execution and Optimization April 6, 2020 25 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Be careful

Find the titles of reserved films

SELECT DISTINCT title
FROM film F, reserved R
WHERE F.filmID = R.filmID

πtitle

onF.filmID=R.filmID

πfilmID

F

πfilmID

R

Too much projection

onF.filmID=R.filmID

πfilmID,title

F

πfilmID

R

Too little projection

πtitle

onF.filmID=R.filmID

πfilmID,title

F

πfilmID

R

Correct
Katja Hose DBS – Query Execution and Optimization April 6, 2020 26 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Be even more careful

Find the titles of expensive reserved films

SELECT DISTINCT title
FROM film F, reserved R

WHERE F.filmID = R.filmID AND F.rentalPrice > 4
πtitle

onF.filmID=R.filmID

σrentalPrice>4

πfilmID,title

F

πfilmID

R

Too much projection

πtitle

σrentalPrice>4

onF.filmID=R.filmID

F πfilmID

R
Selection too late

πtitle

onF.filmID=R.filmID

πfilmID,title

σrentalPrice>4

F

πfilmID

R

Correct
Katja Hose DBS – Query Execution and Optimization April 6, 2020 27 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Summary: heuristic query optimization

Rules of thumb

Perform selections as early as possible

Perform projections as early as possible

The optimization process

Generate initial query plan from SQL statement

Transform query plan into more efficient query plan via a series of
modifications, each of which hopefully reducing execution time

Note

A single query plan provides all the results

Sometimes also called rule-based query optimization

Katja Hose DBS – Query Execution and Optimization April 6, 2020 28 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Summary: heuristic query optimization

Rules of thumb

Perform selections as early as possible

Perform projections as early as possible

The optimization process

Generate initial query plan from SQL statement

Transform query plan into more efficient query plan via a series of
modifications, each of which hopefully reducing execution time

Note

A single query plan provides all the results

Sometimes also called rule-based query optimization

Katja Hose DBS – Query Execution and Optimization April 6, 2020 28 / 63



DBS – Query Execution and Optimization

Heuristic (logical) query optimization

Phases of logical query optimization

Summary: heuristic query optimization

Rules of thumb

Perform selections as early as possible

Perform projections as early as possible

The optimization process

Generate initial query plan from SQL statement

Transform query plan into more efficient query plan via a series of
modifications, each of which hopefully reducing execution time

Note

A single query plan provides all the results

Sometimes also called rule-based query optimization

Katja Hose DBS – Query Execution and Optimization April 6, 2020 28 / 63



DBS – Query Execution and Optimization

Operator implementations

Outline

3 Operator implementations
Selection (access paths)
Join strategies

Katja Hose DBS – Query Execution and Optimization April 6, 2020 28 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Sample database

customer (customerID, name, street, city, state)

reserved (customerID, filmID, resDate)

film (filmID, title, kind, rentalPrice)

Katja Hose DBS – Query Execution and Optimization April 6, 2020 29 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Selection taxonomy

Primary key, point
σfilmID=2(film)

Point
σtitle=′Terminator′(film)

Range
σ1<rentalPrice<4(film)

Conjunction (logical and)
σkind=′F ′ ∧ rentalPrice=4(film)

Disjunction (logical or)
σrentalPrice<2 ∨ kind=′D′(film)

Katja Hose DBS – Query Execution and Optimization April 6, 2020 30 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Selection strategies

Main goal

Replace the leaf operators in the query plan with a specific access method

Katja Hose DBS – Query Execution and Optimization April 6, 2020 31 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Selection strategies – point/range queries

Linear search

Expensive, but always applicable

Binary search

Applicable only when the file is appropriately ordered

Primary hash index/table search

Single record retrieval; does not work for range queries

Retrieval of multiple records

Primary/clustering index search

Multiple records for each index item

Implemented with single pointer to block with first associated record

Secondary index search

Implemented with multiple pointers, each to a single record

Might become expensive

Katja Hose DBS – Query Execution and Optimization April 6, 2020 32 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Selection strategies – point/range queries

Linear search

Expensive, but always applicable

Binary search

Applicable only when the file is appropriately ordered

Primary hash index/table search

Single record retrieval; does not work for range queries

Retrieval of multiple records

Primary/clustering index search

Multiple records for each index item

Implemented with single pointer to block with first associated record

Secondary index search

Implemented with multiple pointers, each to a single record

Might become expensive

Katja Hose DBS – Query Execution and Optimization April 6, 2020 32 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Selection strategies – point/range queries

Linear search

Expensive, but always applicable

Binary search

Applicable only when the file is appropriately ordered

Primary hash index/table search

Single record retrieval; does not work for range queries

Retrieval of multiple records

Primary/clustering index search

Multiple records for each index item

Implemented with single pointer to block with first associated record

Secondary index search

Implemented with multiple pointers, each to a single record

Might become expensive

Katja Hose DBS – Query Execution and Optimization April 6, 2020 32 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Selection strategies – point/range queries

Linear search

Expensive, but always applicable

Binary search

Applicable only when the file is appropriately ordered

Primary hash index/table search

Single record retrieval; does not work for range queries

Retrieval of multiple records

Primary/clustering index search

Multiple records for each index item

Implemented with single pointer to block with first associated record

Secondary index search

Implemented with multiple pointers, each to a single record

Might become expensive

Katja Hose DBS – Query Execution and Optimization April 6, 2020 32 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Selection strategies – point/range queries

Linear search

Expensive, but always applicable

Binary search

Applicable only when the file is appropriately ordered

Primary hash index/table search

Single record retrieval; does not work for range queries

Retrieval of multiple records

Primary/clustering index search

Multiple records for each index item

Implemented with single pointer to block with first associated record

Secondary index search

Implemented with multiple pointers, each to a single record

Might become expensive

Katja Hose DBS – Query Execution and Optimization April 6, 2020 32 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Strategies for conjunctive queries

SELECT *

FROM customer

WHERE name = ’Jensen ’ AND street = ’Elm’

AND state = ’Arizona ’

Can indexes on (name) and (street) be used?

Can an index on (name, street, state) be used?

Can an index on (name, street) be used?

Can an index on (name, street, city) be used?

Can an index on (city, name, street) be used?

Optimization of conjunctive queries

Indexing provides good opportunities for improving performance

Katja Hose DBS – Query Execution and Optimization April 6, 2020 33 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Strategies for conjunctive queries

SELECT *

FROM customer

WHERE name = ’Jensen ’ AND street = ’Elm’

AND state = ’Arizona ’

Can indexes on (name) and (street) be used? Yes

Can an index on (name, street, state) be used? Yes

Can an index on (name, street) be used? Yes

Can an index on (name, street, city) be used? Yes

Can an index on (city, name, street) be used? No

Optimization of conjunctive queries

Indexing provides good opportunities for improving performance

Katja Hose DBS – Query Execution and Optimization April 6, 2020 33 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Strategies for conjunctive queries

SELECT *

FROM customer

WHERE name = ’Jensen ’ AND street = ’Elm’

AND state = ’Arizona ’

Can indexes on (name) and (street) be used? Yes

Can an index on (name, street, state) be used? Yes

Can an index on (name, street) be used? Yes

Can an index on (name, street, city) be used? Yes

Can an index on (city, name, street) be used? No

Optimization of conjunctive queries

Indexing provides good opportunities for improving performance

Katja Hose DBS – Query Execution and Optimization April 6, 2020 33 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Strategies for conjunctive queries

Use available indexes

Ideal: composite index is applicable
If multiple are available
→ use the most selective index, then check remaining conditions

Use intersection of record pointers (if multiple indexes applicable)

Index lookups to fetch sets of record pointers
Intersect record pointers to perform conjunction
Retrieve (and check) the qualifying records

Katja Hose DBS – Query Execution and Optimization April 6, 2020 34 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Strategies for conjunctive queries

Use available indexes

Ideal: composite index is applicable
If multiple are available
→ use the most selective index, then check remaining conditions

Use intersection of record pointers (if multiple indexes applicable)

Index lookups to fetch sets of record pointers
Intersect record pointers to perform conjunction
Retrieve (and check) the qualifying records

Katja Hose DBS – Query Execution and Optimization April 6, 2020 34 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Strategies for conjunctive queries

Use available indexes

Ideal: composite index is applicable
If multiple are available
→ use the most selective index, then check remaining conditions

Use intersection of record pointers (if multiple indexes applicable)

Index lookups to fetch sets of record pointers
Intersect record pointers to perform conjunction
Retrieve (and check) the qualifying records

Disjunctive queries provide little opportunity for improving performance.

Database tuning and the creation of indexes is important!

Katja Hose DBS – Query Execution and Optimization April 6, 2020 34 / 63



DBS – Query Execution and Optimization

Operator implementations

Selection (access paths)

Strategies for conjunctive queries

Use available indexes

Ideal: composite index is applicable
If multiple are available
→ use the most selective index, then check remaining conditions

Use intersection of record pointers (if multiple indexes applicable)

Index lookups to fetch sets of record pointers
Intersect record pointers to perform conjunction
Retrieve (and check) the qualifying records

Disjunctive queries provide little opportunity for improving performance.

Database tuning and the creation of indexes is important!

Katja Hose DBS – Query Execution and Optimization April 6, 2020 34 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Outline

3 Operator implementations
Selection (access paths)
Join strategies

Katja Hose DBS – Query Execution and Optimization April 6, 2020 34 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Join algorithms

Join strategies

Nested loop join

Index-based join

Sort-merge join

Hash join

Strategies work on a per block (not per record) basis

Estimate I/Os (block retrievals)

Use of main memory buffer

Table sizes and join selectivities influence join costs

Query selectivity: sel = #tuples in result
#candidates

For join, #candidates is the size of the Cartesian product

Katja Hose DBS – Query Execution and Optimization April 6, 2020 35 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Join algorithms

Join strategies

Nested loop join

Index-based join

Sort-merge join

Hash join

Strategies work on a per block (not per record) basis

Estimate I/Os (block retrievals)

Use of main memory buffer

Table sizes and join selectivities influence join costs

Query selectivity: sel = #tuples in result
#candidates

For join, #candidates is the size of the Cartesian product

Katja Hose DBS – Query Execution and Optimization April 6, 2020 35 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Join algorithms

Join strategies

Nested loop join

Index-based join

Sort-merge join

Hash join

Strategies work on a per block (not per record) basis

Estimate I/Os (block retrievals)

Use of main memory buffer

Table sizes and join selectivities influence join costs

Query selectivity: sel = #tuples in result
#candidates

For join, #candidates is the size of the Cartesian product

Katja Hose DBS – Query Execution and Optimization April 6, 2020 35 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

= ID name number

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

= ID name number

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

23 Anne 100

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

23 Anne 100

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

23 Anne 100

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

23 Anne 100

23 Anne 130

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

23 Anne 100

23 Anne 130

23 Anne 140

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

23 Anne 100

23 Anne 130

23 Anne 140

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

23 Anne 100

23 Anne 130

23 Anne 140

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

23 Anne 100

23 Anne 130

23 Anne 140

emp phone result

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

ID name

10 Jim

13 Joe

14 Sue

15 Pete

21 Dave

23 Anne

on

number ID

100 23

110 10

120 15

130 23

140 23

150 13

160 15

170 21

=

ID name number

10 Jim 110

13 Joe 150

15 Pete 120

15 Pete 160

21 Dave 170

23 Anne 100

23 Anne 130

23 Anne 140

emp phone result

Brute-force comparison, expensive exhaustive comparison

No preprocessing of input relations needed

No index required, all join conditions supported

Katja Hose DBS – Query Execution and Optimization April 6, 2020 36 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Nested loop join

Katja Hose DBS – Query Execution and Optimization April 6, 2020 37 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Block nested loop join

Not all blocks fit into main memory

repeat
read nB − 2 blocks from outer relation
repeat

read 1 block from inner relation
compare tuples

until complete inner relation read
until complete outer relation read

Parameters

binner, bouter: number of blocks

nB: size of main memory buffer

Cost estimation (block transfers)

bouter + (dbouter/(nB − 2)e) · binner

If we know more system parameters (block transfer, disk seeks, CPU
speed,. . . ) and the size of input relations, we can estimate the time to
compute the join.

Katja Hose DBS – Query Execution and Optimization April 6, 2020 38 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Block nested loop join

Not all blocks fit into main memory

repeat
read nB − 2 blocks from outer relation
repeat

read 1 block from inner relation
compare tuples

until complete inner relation read
until complete outer relation read

Parameters

binner, bouter: number of blocks

nB: size of main memory buffer

Cost estimation (block transfers)

bouter + (dbouter/(nB − 2)e) · binner

If we know more system parameters (block transfer, disk seeks, CPU
speed,. . . ) and the size of input relations, we can estimate the time to
compute the join.

Katja Hose DBS – Query Execution and Optimization April 6, 2020 38 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Block nested loop join

Not all blocks fit into main memory

repeat
read nB − 2 blocks from outer relation
repeat

read 1 block from inner relation
compare tuples

until complete inner relation read
until complete outer relation read

Parameters

binner, bouter: number of blocks

nB: size of main memory buffer

Cost estimation (block transfers)

bouter + (dbouter/(nB − 2)e) · binner

If we know more system parameters (block transfer, disk seeks, CPU
speed,. . . ) and the size of input relations, we can estimate the time to
compute the join.

Katja Hose DBS – Query Execution and Optimization April 6, 2020 38 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Block nested loop join

Example (reserved on customer)

number of blocks
breserved = 2.000, bcustomer = 10

size of main memory buffer
nB = 6

Cost estimation (block transfers)
bouter + (dbouter/(nB − 2)e) · binner

Katja Hose DBS – Query Execution and Optimization April 6, 2020 39 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Block nested loop join

Example (reserved on customer)

number of blocks
breserved = 2.000, bcustomer = 10

size of main memory buffer
nB = 6

Cost estimation (block transfers)
bouter + (dbouter/(nB − 2)e) · binner

Costs

reserved as outer
2.000 + d(2.000/4)e · 10 = 7.000

customer as outer
10 + d(10/4)e · 2.000 = 6.010

Katja Hose DBS – Query Execution and Optimization April 6, 2020 39 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Index-based block nested loop join

Same principle as standard nested loop join

Outer relation

Inner relation

Index lookups can replace file scans on the inner relation

Katja Hose DBS – Query Execution and Optimization April 17, 2020 40 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

Exploit sorted relations

R S
A B

... 0 ← → 5 ...

... 7 6 ...

... 7 7 ...

... 8 8 ...

... 8 8 ...

... 10 11 ...

... ... ... ...

Assumption:
Both input relations are sorted

Katja Hose DBS – Query Execution and Optimization April 17, 2020 41 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

100 23
110 10
120 15
130 23
140 23
150 13
160 15
170 21

=

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

= ID name number

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

= ID name number

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

=
ID name number

10 Jim 110

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

=

ID name number

10 Jim 110
13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

=

ID name number

10 Jim 110
13 Joe 150

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

=

ID name number

10 Jim 110
13 Joe 150
15 Pete 120

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

=

ID name number

10 Jim 110
13 Joe 150
15 Pete 120
15 Pete 160

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

=

ID name number

10 Jim 110
13 Joe 150
15 Pete 120
15 Pete 160
21 Dave 170

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

=

ID name number

10 Jim 110
13 Joe 150
15 Pete 120
15 Pete 160
21 Dave 170
23 Anne 100

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

=

ID name number

10 Jim 110
13 Joe 150
15 Pete 120
15 Pete 160
21 Dave 170
23 Anne 100
23 Anne 130

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

110 10
150 13
120 15
160 15
170 21
100 23
130 23
140 23

=

ID name number

10 Jim 110
13 Joe 150
15 Pete 120
15 Pete 160
21 Dave 170
23 Anne 100
23 Anne 130
23 Anne 140

emp phone result

Katja Hose DBS – Query Execution and Optimization April 17, 2020 42 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join – costs

Parameters

b1, b2: number of blocks

Cost estimation (block transfers)

b1 + b2

Extensions

Combination with sorting if input relations are not sorted

Not enough main memory

Katja Hose DBS – Query Execution and Optimization April 17, 2020 43 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Merge join – costs

Parameters

b1, b2: number of blocks

Cost estimation (block transfers)

b1 + b2

Extensions

Combination with sorting if input relations are not sorted

Not enough main memory

Katja Hose DBS – Query Execution and Optimization April 17, 2020 43 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Hash join

ID name

10 Jim
13 Joe
14 Sue
15 Pete
21 Dave
23 Anne

on

number ID

100 23
110 10
120 15
130 23
140 23
150 13
160 15
170 21

emp phone

Apply hash functions to the join attributes
→ partition tuples into buckets

ID name

15 Pete
21 Dave

on

number ID

120 15
160 15
170 21

=

ID name number

15 Pete 120
15 Pete 160
21 Dave 170

emp0 phone0 result0

ID name

10 Jim
13 Joe

on
number ID

110 10
150 13

=

ID name number

10 Jim 110
13 Joe 150

emp1 phone1 result1

ID name

14 Sue
23 Anne

on

number ID

100 23
130 23
140 23

=

ID name number

23 Anne 100
23 Anne 130
23 Anne 140

emp2 phone2 result2

result = result0 ∪ result1 ∪ result2

Katja Hose DBS – Query Execution and Optimization April 17, 2020 44 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Hash join

ID name

15 Pete
21 Dave

on

number ID

120 15
160 15
170 21

=

ID name number

15 Pete 120
15 Pete 160
21 Dave 170

emp0 phone0 result0

ID name

10 Jim
13 Joe

on
number ID

110 10
150 13

=

ID name number

10 Jim 110
13 Joe 150

emp1 phone1 result1

ID name

14 Sue
23 Anne

on

number ID

100 23
130 23
140 23

=

ID name number

23 Anne 100
23 Anne 130
23 Anne 140

emp2 phone2 result2

result = result0 ∪ result1 ∪ result2

Katja Hose DBS – Query Execution and Optimization April 17, 2020 44 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Hash join

ID name

15 Pete
21 Dave

on

number ID

120 15
160 15
170 21

=

ID name number

15 Pete 120
15 Pete 160
21 Dave 170

emp0 phone0 result0

ID name

10 Jim
13 Joe

on
number ID

110 10
150 13

=

ID name number

10 Jim 110
13 Joe 150

emp1 phone1 result1

ID name

14 Sue
23 Anne

on

number ID

100 23
130 23
140 23

=

ID name number

23 Anne 100
23 Anne 130
23 Anne 140

emp2 phone2 result2

result = result0 ∪ result1 ∪ result2

Katja Hose DBS – Query Execution and Optimization April 17, 2020 44 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Hash join

Hash each relation on the join attributes

Each bucket must be small enough to fit into memory

Join corresponding buckets from each relation

Katja Hose DBS – Query Execution and Optimization April 17, 2020 45 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Hash join

Parameters

b1, b2: number of blocks for tables R1 and R2

Steps

Partitioning table R1 with h1 into buckets r1i (read all / write all)
2× b1

Partitioning table R2 with h1 into buckets r2i(read all / write all)
2× b2
Build phase:
use h2 to create an in-memory hash index on bucket r1i (read all)
b1
Probe phase:
for corresponding r2i , use h2 to test in-memory index for matches (read all)
b2

Cost estimation (block transfers)
2× b1

Katja Hose DBS – Query Execution and Optimization April 17, 2020 46 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Hash join

Parameters

b1, b2: number of blocks for tables R1 and R2

Steps

Partitioning table R1 with h1 into buckets r1i (read all / write all)
2× b1
Partitioning table R2 with h1 into buckets r2i(read all / write all)
2× b2

Build phase:
use h2 to create an in-memory hash index on bucket r1i (read all)
b1
Probe phase:
for corresponding r2i , use h2 to test in-memory index for matches (read all)
b2

Cost estimation (block transfers)

2× b1 + 2× b2
Katja Hose DBS – Query Execution and Optimization April 17, 2020 46 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Hash join

Parameters

b1, b2: number of blocks for tables R1 and R2

Steps

Partitioning table R1 with h1 into buckets r1i (read all / write all)
2× b1
Partitioning table R2 with h1 into buckets r2i(read all / write all)
2× b2
Build phase:
use h2 to create an in-memory hash index on bucket r1i (read all)
b1

Probe phase:
for corresponding r2i , use h2 to test in-memory index for matches (read all)
b2

Cost estimation (block transfers)

3× b1 + 2× b2
Katja Hose DBS – Query Execution and Optimization April 17, 2020 46 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Hash join

Parameters

b1, b2: number of blocks for tables R1 and R2

Steps

Partitioning table R1 with h1 into buckets r1i (read all / write all)
2× b1
Partitioning table R2 with h1 into buckets r2i(read all / write all)
2× b2
Build phase:
use h2 to create an in-memory hash index on bucket r1i (read all)
b1
Probe phase:
for corresponding r2i , use h2 to test in-memory index for matches (read all)
b2

Cost estimation (block transfers)

3× b1 + 3× b2
Katja Hose DBS – Query Execution and Optimization April 17, 2020 46 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Hash join

Parameters

b1, b2: number of blocks for tables R1 and R2

Steps

Partitioning table R1 with h1 into buckets r1i (read all / write all)
2× b1
Partitioning table R2 with h1 into buckets r2i(read all / write all)
2× b2
Build phase:
use h2 to create an in-memory hash index on bucket r1i (read all)
b1
Probe phase:
for corresponding r2i , use h2 to test in-memory index for matches (read all)
b2

Cost estimation (block transfers)

3× b1 + 3× b2 + ε (partially filled blocks)

Katja Hose DBS – Query Execution and Optimization April 17, 2020 46 / 63



DBS – Query Execution and Optimization

Operator implementations

Join strategies

Costs and applicability of join strategies

Nested loop join

Can be used for all join types
Can be quite expensive

Merge join

Files need to be sorted on the join attributes
Sorting can be done for the purpose of the join
Can use indexes

Hash join

Good hash functions are essential
Performance best if smallest relation fits into main memory

Katja Hose DBS – Query Execution and Optimization April 17, 2020 47 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Outline

4 Cost-based (physical) query optimization
Selectivity and cardinality
Cost estimation
PostgreSQL

Katja Hose DBS – Query Execution and Optimization April 17, 2020 47 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Objective

For a given query, find the most efficient query execution plan

Optimization

Heuristic (logical) optimization

Query tree (relational algebra) optimization

Cost-based (physical) optimization

Katja Hose DBS – Query Execution and Optimization April 17, 2020 48 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Objective

For a given query, find the most efficient query execution plan

Optimization

Heuristic (logical) optimization

Query tree (relational algebra) optimization

Cost-based (physical) optimization

Katja Hose DBS – Query Execution and Optimization April 17, 2020 48 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Physical query optimization

Physical query optimization

Generate alternative query execution plans

Choose algorithms and access paths

Compute costs

Choose cheapest query execution plan

Prerequisite

Cost model

Statistics on the input to each operation

Statistics on leaf relations: stored in system catalog
Statistics on intermediate relations must be estimated (cardinalities)

Katja Hose DBS – Query Execution and Optimization April 17, 2020 49 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Physical query optimization

Physical query optimization

Generate alternative query execution plans

Choose algorithms and access paths

Compute costs

Choose cheapest query execution plan

Prerequisite

Cost model

Statistics on the input to each operation

Statistics on leaf relations: stored in system catalog
Statistics on intermediate relations must be estimated (cardinalities)

Katja Hose DBS – Query Execution and Optimization April 17, 2020 49 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Selectivity and cardinality

Outline

4 Cost-based (physical) query optimization
Selectivity and cardinality
Cost estimation
PostgreSQL

Katja Hose DBS – Query Execution and Optimization April 17, 2020 49 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Selectivity and cardinality

Statistics per relation

For relation r

Number of tuples (records): nr

Tuple size in relation r: lr

Load factor (fill factor), percentage of space used in each block

Blocking factor (number of records per block)

Relation size in blocks: br

Relation organization
Heap, hash, indexes, clustered

Number of overflow blocks

Katja Hose DBS – Query Execution and Optimization April 17, 2020 50 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Selectivity and cardinality

Statistics per attribute

For attribute A in relation r

Size and type

Number of distinct values for attribute A: V (A, r)
The same as the size of πA(r)

Selection cardinality S(A, r)
The same as the size of σA=a(r) for an arbitrary value a

Probability distribution over the values
Alternative: assume uniform distribution

Statistics need to be updated when the table is updated!

Katja Hose DBS – Query Execution and Optimization April 17, 2020 51 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Selectivity and cardinality

Statistics per attribute

For attribute A in relation r

Size and type

Number of distinct values for attribute A: V (A, r)
The same as the size of πA(r)

Selection cardinality S(A, r)
The same as the size of σA=a(r) for an arbitrary value a

Probability distribution over the values
Alternative: assume uniform distribution

Statistics need to be updated when the table is updated!

Katja Hose DBS – Query Execution and Optimization April 17, 2020 51 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Selectivity and cardinality

Statistics per index

Base relation

Indexed attribute(s)

Organization, e.g., B+-tree, hash

Clustering index?

On key attribute(s)?

Sparse or dense?

Number of levels (if appropriate)

Number of leaf-level index blocks

Katja Hose DBS – Query Execution and Optimization April 17, 2020 52 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Outline

4 Cost-based (physical) query optimization
Selectivity and cardinality
Cost estimation
PostgreSQL

Katja Hose DBS – Query Execution and Optimization April 17, 2020 52 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

What are the names of customers living on Elm street who have reserved
“Terminator”?

SELECT name
FROM customer C, reserved R, Film F
WHERE title = ’Terminator’ AND F.filmID = R.filmID
AND C.customerID = R.customerID AND C.street = ’Elm’;

Katja Hose DBS – Query Execution and Optimization April 17, 2020 53 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πname

onC .customerID=R.customerID

πR.customerID πcustomerID ,name

σstreet=′Elm′
onF .filmID=R.filmID

πfilmID Reserved

Customer
σ′Terminator′

Film

Katja Hose DBS – Query Execution and Optimization April 17, 2020 53 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πname

onC .customerID=R.customerID

πR.customerID πcustomerID ,name

σstreet=′Elm′
onF .filmID=R.filmID

πfilmID Reserved

Customer
σ′Terminator′

Film

Katja Hose DBS – Query Execution and Optimization April 17, 2020 54 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πfilmID(σtitle=′Terminator′(Film))

Statistics

Relation statistics

number of tuples: nFilm = 5000
relation size in blocks: bFilm = 50

Attribute statistics

Selection cardinality: S(title, F ilm) = 1

Index statistics

Hash index on attribute “title”

Katja Hose DBS – Query Execution and Optimization April 17, 2020 54 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πfilmID(σtitle=′Terminator′(Film))

Statistics

Relation statistics

number of tuples: nFilm = 5000
relation size in blocks: bFilm = 50

Attribute statistics

Selection cardinality: S(title, F ilm) = 1

Index statistics

Hash index on attribute “title”

Execution

Use index with ‘Terminator’

Project on filmID

Leave result in main memory (1 block)

costsdisk access = 1

Result size: 1 tuple

Katja Hose DBS – Query Execution and Optimization April 17, 2020 54 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πname

onC .customerID=R.customerID

πR.customerID πcustomerID ,name

σstreet=′Elm′
onR1 .filmID=R.filmID

R1 Reserved

Customer

Katja Hose DBS – Query Execution and Optimization April 17, 2020 55 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πR.customerID(R1 onR1.filmID=R.filmID Reserved)

Statistics

Relation statistics

number of tuples: nReserved = 40000
relation size in blocks: bFilm = 2000

Attribute statistics

Selection cardinality: S(filmID,Reserved) = 8

Index statistics

Primary B+-tree index for Reserved on filmID with 2 levels

Katja Hose DBS – Query Execution and Optimization April 17, 2020 55 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πR.customerID(R1 onR1.filmID=R.filmID Reserved)

Statistics

Relation statistics

number of tuples: nReserved = 40000
relation size in blocks: bFilm = 2000

Attribute statistics

Selection cardinality: S(filmID,Reserved) = 8

Index statistics

Primary B+-tree index for Reserved on filmID with 2 levels

Execution

Index join using B+-tree

Project on customerID

Leave result in main memory (1 block)

costsdisk access = 3
(2 index levels, 1 record
lookup)

Result size: 8 tuples

Katja Hose DBS – Query Execution and Optimization April 17, 2020 55 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πname

onC .customerID=R2 .customerID

R2
πcustomerID ,name

σstreet=′Elm′

Customer

Katja Hose DBS – Query Execution and Optimization April 17, 2020 56 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πcustomerID,name(σstreet=′Elm′(Customer))

Statistics

Relation statistics

number of tuples: nCustomer = 200
relation size in blocks: bCustomer = 10

Attribute statistics

Selection cardinality: S(street, Customer) = 10

Index statistics

No index on “street”

Katja Hose DBS – Query Execution and Optimization April 17, 2020 56 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πcustomerID,name(σstreet=′Elm′(Customer))

Statistics

Relation statistics

number of tuples: nCustomer = 200
relation size in blocks: bCustomer = 10

Attribute statistics

Selection cardinality: S(street, Customer) = 10

Index statistics

No index on “street”

Execution

Linear search of Customer

Project on customerID, name

Leave result in main memory (1 block)

costsdisk access = 10

Result size: 10 tuples

Katja Hose DBS – Query Execution and Optimization April 17, 2020 56 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πname

onR3 .customerID=R2 .customerID

R2 R3

Katja Hose DBS – Query Execution and Optimization April 17, 2020 57 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost estimation example

πname(R2 onR3.customerID=R2.customerID R3)

Execution

Main memory join on relations

Total Costs
costsdisk access = 1 + 3 + 10 + 0 = 14

Katja Hose DBS – Query Execution and Optimization April 17, 2020 57 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost model

Cost models consider more aspects than only disk access

CPU time

Communication time

Main memory usage

. . .

For this purpose, we need to estimate input/output sizes of each operator

Statistics on leaf relations: stored in system catalog

Statistics on intermediate relations must be estimated (cardinalities)

Additional aspects

Spanning search space (dynamic programming, exhaustive search,. . . )

Bushy vs. left-deep join trees (parallelism vs. pipelining)

Multiquery optimization (shared scans,. . . )

. . .

Katja Hose DBS – Query Execution and Optimization April 17, 2020 58 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost model

Cost models consider more aspects than only disk access

CPU time

Communication time

Main memory usage

. . .

For this purpose, we need to estimate input/output sizes of each operator

Statistics on leaf relations: stored in system catalog

Statistics on intermediate relations must be estimated (cardinalities)

Additional aspects

Spanning search space (dynamic programming, exhaustive search,. . . )

Bushy vs. left-deep join trees (parallelism vs. pipelining)

Multiquery optimization (shared scans,. . . )

. . .

Katja Hose DBS – Query Execution and Optimization April 17, 2020 58 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Cost model

Cost models consider more aspects than only disk access

CPU time

Communication time

Main memory usage

. . .

For this purpose, we need to estimate input/output sizes of each operator

Statistics on leaf relations: stored in system catalog

Statistics on intermediate relations must be estimated (cardinalities)

Additional aspects

Spanning search space (dynamic programming, exhaustive search,. . . )

Bushy vs. left-deep join trees (parallelism vs. pipelining)

Multiquery optimization (shared scans,. . . )

. . .
Katja Hose DBS – Query Execution and Optimization April 17, 2020 58 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

Cost estimation

Heuristic vs. cost-based query optimization

Heuristic

Can always be used

Sequences of query plans are
generated

Each plan is (presumably)
more efficient than the
previous

Search is linear

Cost-based

Can only be used if statistics
are kept and maintained

Many query plans are
generated

The costs of each plan is
estimated, and the most
efficient one is chosen

Search is multi-dimensional

Katja Hose DBS – Query Execution and Optimization April 17, 2020 59 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

PostgreSQL

Outline

4 Cost-based (physical) query optimization
Selectivity and cardinality
Cost estimation
PostgreSQL

Katja Hose DBS – Query Execution and Optimization April 17, 2020 59 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

PostgreSQL

PostgreSQL

SELECT DISTINCT s.semester
FROM student s, takes h,

course v, professor p
WHERE p.name=‘Socrates‘ AND

v.taughtBy = p.empID AND
v.courseID = h.courseID AND
h.studID = s.studID;

πs.semester

ons.studID=h.studID

ons.studID=h.studID s

onp.empID=v .taughtBy πh.studID

hπp.empID

σp.name=‘Socrates‘

πv.taughtBy

v

p

Katja Hose DBS – Query Execution and Optimization April 17, 2020 60 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

PostgreSQL

PostgreSQL EXPLAIN

EXPLAIN SELECT DISTINCT s.semester
FROM student s, takes h,

course v, professor p
WHERE p.name=‘Socrates‘ AND

v.taughtBy = p.empID AND
v.courseID = h.courseID AND
h.studID = s.studID;

EXPLAIN

Display the execution plan that the PostgreSQL planner generates for the
supplied statement

Katja Hose DBS – Query Execution and Optimization April 17, 2020 61 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

PostgreSQL

PostgreSQL EXPLAIN

Katja Hose DBS – Query Execution and Optimization April 17, 2020 61 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

PostgreSQL

PostgreSQL EXPLAIN ANALYZE

EXPLAIN ANALYZE SELECT DISTINCT s.semester
FROM student s, takes h,

course v, professor p
WHERE p.name=‘Socrates‘ AND

v.taughtBy = p.empID AND
v.courseID = h.courseID AND
h.studID = s.studID;

EXPLAIN ANALYZE

The additional ANALYZE option causes the statement to be actually
executed, not only planned.

ANALYZE

ANALYZE collects statistics about the contents of tables in the database.

Katja Hose DBS – Query Execution and Optimization April 17, 2020 62 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

PostgreSQL

PostgreSQL EXPLAIN ANALYZE

Katja Hose DBS – Query Execution and Optimization April 17, 2020 62 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

PostgreSQL

PostgreSQL EXPLAIN ANALYZE

Katja Hose DBS – Query Execution and Optimization April 17, 2020 62 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

PostgreSQL

Sequential scans vs. indexes

If an index is “useful” or not depends on

How much data is relevant to the query

Size of the relation

Properties of the index (clustered, multiple columns,. . . )

What algorithm needs the data as input

. . .

Until query optimization is perfected, the main task of database
administrators will remain query tuning (creating indexes, etc.).

Katja Hose DBS – Query Execution and Optimization April 17, 2020 63 / 63



DBS – Query Execution and Optimization

Cost-based (physical) query optimization

PostgreSQL

Sequential scans vs. indexes

If an index is “useful” or not depends on

How much data is relevant to the query

Size of the relation

Properties of the index (clustered, multiple columns,. . . )

What algorithm needs the data as input

. . .

Until query optimization is perfected, the main task of database
administrators will remain query tuning (creating indexes, etc.).

Katja Hose DBS – Query Execution and Optimization April 17, 2020 63 / 63



DBS – Query Execution and Optimization

Summary

Query optimization is the heart of a relational DBMS

Heuristic optimization can always be used but might potentially lead
to bad plans

Cost-based optimization relies on statistics gathered on the relations

Database systems provide information on the “best” query execution
plan (EXPLAIN)

The database administrator needs to think of more improvements
(e.g., indexes)

Katja Hose DBS – Query Execution and Optimization April 17, 2020 63 / 63


	Introduction
	Query processing
	Query optimization

	Heuristic (logical) query optimization
	Equivalences in relational algebra
	Phases of logical query optimization

	Operator implementations
	Selection (access paths)
	Join strategies

	Cost-based (physical) query optimization
	Selectivity and cardinality
	Cost estimation
	PostgreSQL

	
	


