
Programming Paradigms
Second session about typed functional programming in Haskell

Hans Hüttel

27 October 2020

Read this first: How to write your answers

At the written exam, you are supposed to write your answers by annotating a PDF file. So you should
also do this now, during the course itself. to practice how this is done. Use the annotation capabilities of
your PDF reader to do this. Several commonly available PDF reader support this. If in doubt, ask me.

Write your answers in the boxes provided except for the last problem that relates directly to your
miniproject. Here you should save your answer in a separate file that you can use when completing the
miniproject.

Please also read this

One of the very important learning goals of this session is that you become able to find the types of
expressions in Haskell. In some of these problems, you are asked first specify the type of the functions
and other expressions that are being asked for without consulting the Haskell interpreter. Only then
should you start programming.

In other problems, you should do the opposite – first write the function and try to find its type. In
these cases, do not just make a guess – please provide the reasoning behind your answer.

1

Problem 1

Use list comprehension to define a function isprime that will tell us if any given natural number is a
prime number.

• Figure out what the type of isprime should be.

• Now write the code. Hint: By definition, a natural number n is a prime number if its only divisors
are 1 and n. It is a good idea to define an auxiliary function that returns the list of divisors of n
using list comprehension.

Problem 2

The Peano axioms define the set of natural numbers as follows.

• Zero is a natural number

• The successor of a natural number is a natural number

1. Use this to define a recursive datatype Nat for the natural numbers.

2

Hans Hüttel
isprime :: Integral a => a -> Bool

Hans Hüttel
isprime n = ([x | x <- [1..n], n `mod` x == 0] == [1,n])

Hans Hüttel
data Nat = Zero | Succ Nat

2. Define a function nat2int that will convert any member of Nat to its corresponding integer. First
figure out what the type of nat2int should be, and only then write the code.

3. Define a function int2nat that will convert any integer to its corresponding member of Nat. First
figure out the type of int2nat in the Haskell type system, and only then write the code.

3

Hans Hüttel
nat2int Zero = 0
nat2int (Succ n) = (nat2int n) + 1

Hans Hüttel
int2nat 0 = Zero
int2nat n = Succ (int2nat (n-1))

Problem 3

In the previous session, we looked at the Fibonacci numbers and an inefficient way of computing fib n
for any n.

Now define an efficient version using lazy evaluation that will allow you to compute fib 40.

Hint: Define a function that returns the list of all Fibonacci numbers, computed from below, starting
with 1 and 1.

Problem 4

Consider the following data type of binary trees:

data Tree a = Leaf a | Node (Tree a) (Tree a)}

We say that a binary tree is balanced if the number of leaves in every left and right subtree differs by
at most one with leaves themselves being trivially balanced. Define a function balanced that will tell us
if a binary tree is balanced or not.

1. Write the definition of the function balanced. Hint: It is probably a good idea to define an auxiliary
function that computes the number of leaves in a binary tree.

4

Hans Hüttel
fib n = head (drop (n-1) (fibs 1 1))
 where
 fibs a b = a : (fibs b (a+b))

2. Find the type of balanced without using the Haskell system. Justify your answer. Use the Haskell
system to check if your answer is correct.

Problem 5

Without looking at the definition from the standard prelude, define the function any that decides if any
elements of a list satisfy a predicate.

For instance, if

odd x = ((x ‘mod‘ 2) == 1)

then

any odd [2,5,8,3,7,4]

should return True, whereas

any odd [2,8,42]

should return False.

5

Hans Hüttel
data Tree a = Leaf a | Node (Tree a) (Tree a)

number_of_leaves (Leaf n) = 1
number_of_leaves (Node t1 t2) = let
 v1 = number_of_leaves t1
 v2 = number_of_leaves t2
 in
 v1+v2

balanced (Leaf n) = True
balanced (Node t1 t2) = let
 v1 = number_of_leaves t1
 v2 = number_of_leaves t2
 diff = (abs v1 - v2)
 in
 (diff <= 1) && balanced t1 && balanced t2

Hans Hüttel
balanced :: Tree a -> Bool

1. What should the type of any be?

2. Write a recursive definition of any.

3. Write a definition that uses foldl or foldr.

6

Hans Hüttel
any' :: (t -> Bool) -> [t] -> Bool

Hans Hüttel
I call the function any’ to avoid confusion with the function of the same
name in the prelude. We have

Hans Hüttel
any' f [] = False
any' f (x:xs) = (f x) || (any' f xs)

7

Hans Hüttel
Here are two versions:

any'' f = foldr (\x a -> (f x) || a) False

any''' f = foldl (\a x -> (f x) || a) False

any'''' f = foldr (\x a -> if (f x) then True else a) False

Problem 6

Define filter using foldr. Hint: How did we define map using foldr?

A problem directly related to the miniproject

1. Create a type LTree of binary trees whose leaves are labelled with characters and whose root is
labelled with a real number. Hint: Use a datatype for the tree part and a type synonym to define
root-labelled trees.

2. Define a function treemerge that takes two trees of type LTree and returns a new tree of type LTree
whose root is labelled with the sum of the roots and has two trees as subtrees.

8

Hans Hüttel
filter' pred = foldr (\x acc -> if (pred x) then x:acc else acc) []

