Programming Paradigms
 Third session about logic programming

Hans Hüttel

8 December 2020

Problem 1

The natural numbers were defined in the podcast as

```
nat(zero).
nat(succ(X)) :- nat(X).
```

- Implement the following relations on natural numbers:,- and minimum. Use the definitions of addition and \leq from the podcast for today.

```
nat(zero).
nat(succ(X)) :- nat(X).
leq(zero, Y) :- nat(Y).
leq(succ(X), succ(Y)) :- leq(X, Y), nat(X), nat(Y).
add(X, zero, X) :- nat(X).
add(zero, Y, Y) :- nat(Y).
add(succ(X), Y, succ(R)) :- add(X, Y, R), nat(X), nat(Y), nat(R).
sub(X,zero,X) :- nat(X).
sub(succ(X),succ(Y),zero) :- Y = X, nat(X).
sub(succ(X),Y,W) :- W = succ(Z), sub(X,Y,Z), nat(Z).
mult(X,zero,zero) :- nat(X).
mult(X,succ(Y),Z) :- mult(X,Y,V), nat(V), add(V,X,Z), nat(Z).
min}(X,Y,X) :- nat(X),nat(Y),leq(X,Y)
min(X,Y,Y) :- nat(X),nat(Y),leq(Y,X).
```

- Describe how Prolog enables computation of subtraction from addition.

An alternative solution is
sub1 (X,Y,Z) :- $\operatorname{add}(Y, Z, X)$.
This says that $\mathrm{X}-\mathrm{Y}=\mathrm{Z}$ if $\mathrm{Y}+\mathrm{Z}=\mathrm{X}$. To find $\mathrm{N} 1-\mathrm{N} 2$, simply make the query
sub1(N1-N2,R)
The R returned is the value of $\mathrm{N} 1-\mathrm{N} 2$.

Problem 2

Use the representations from the solution to the previous problem to formulate and test Prolog queries that determine if the following equations have a solution:

- $x=1+2$
- $x+2=3$
- $x \cdot x+1=5$
- $x \leq \operatorname{minimum}(x, y)$
where x and y are natural numbers.

```
solve1(X) :- nat(X), mult(X,succ(X),succ(succ(succ(succ(succ(zero)))))).
solve2(X) :- nat(X), add(X,succ(succ(zero)),succ(succ(succ(zero)))).
solve3(X) :- nat(X), mult(X,X,V), succ(V) = succ(succ(succ(succ(succ(zero))))).
solve4(X,Y) :- nat(X), nat(Y), nat(Z), min(X,Y,Z), leq(X,Z).
```


Problem 3

Implement the Fibonacci function as a Prolog predicate fib.
\square

Problem 4

Implement Prolog predicates prefix(xs, ys) and suffix(xs, ys) that tell us if the list xs is a prefix or suffix of ys.
prefix([],_).
prefix([X|XS],[X|YS]) :- $\operatorname{prefix}(X S, Y S)$.
suffix([],_).
suffix([X|XS],[X|XS]).
suffix(XS,[_|YS]) :- suffix(XS,YS).

Problem 5

Implement the Prolog predicate double(xs, ys) that tells us that the list ys duplicates every element in the list xs. As an example, we should have that double($[1,2,3],[1,1,2,2,3,3])$.
double([],[]).
double([X|XS],[X|[X|XXS]]) :- double(XS,XXS).

Problem 6

Implement $\operatorname{zip}(x s, y s, z s)$ to compute the pairing of the elements of the lists $x s$ and $y s$. Then, implement unzip(xs, rs,ss) for the reverse.

As an example, we should have that

$$
\operatorname{zip}([1,2,3],[3,4,5],[(1,3),(2,4),(3,5)])
$$

and that

$$
\text { unzip }([(1,3),(2,4),(3,5)],[1,2,3],[3,4,5])
$$

```
zip([],[],[]).
zip([X|XS],[Y|YS],[(X,Y)|XSYS]) :- zip(XS,YS,XSYS).
unzip([],[],[]).
unzip([(X,Y)|XSYS],[X|XS],[Y|YS]) :- unzip(XSYS,XS,YS).
```


Problem 7

Implement prefix and suffix in terms of append.

```
append([],YS,YS).
append([X|XS],YS,[X|XSYS]) :- append(XS,YS,XSYS).
prefix1(X,Y) :- append(X,_,Y).
suffix1(X,Y) :- append(_,X,Y).
```

The last two definitions should remind us that existential quantification is our friend in Prolog.
X is a prefix of Y if there exists some list that, when appended to X, gives us Y.
X is a suffix of Y if there exists some list that, when X is appended to it, gives us Y.

For the miniproject

We can describe a directed graph with weighted edges by 3-place predicate edge.
Below is an example of this can be done. edge ($a, b, 3$) tells us that there is an edge from vertex a to vertex b with weight 3 .
edge ($\mathrm{a}, \mathrm{b}, 3$).
edge ($a, c, 5$).
edge (b, d, 4).
edge(b,a,2).
edge (c, d, 4).
Write a predicate leastinpath $(\mathrm{X}, \mathrm{Y}, \mathrm{V})$ that holds if V is the least weight found in any path from X to Y. One way of approaching this is to find the list of weights that appears in any path from X to Y, but do we really need that?

