
Programming Paradigms
Third session about logic programming

Hans Hüttel

8 December 2020

Problem 1

The natural numbers were defined in the podcast as

nat(zero).

nat(succ(X)) :- nat(X).

• Implement the following relations on natural numbers: −, · and minimum. Use the definitions of
addition and ≤ from the podcast for today.

• Describe how Prolog enables computation of subtraction from addition.

1

Hans Hüttel
nat(zero).
nat(succ(X)) :- nat(X).

leq(zero, Y) :- nat(Y).
leq(succ(X), succ(Y)) :- leq(X, Y), nat(X), nat(Y).

add(X, zero, X) :- nat(X).
add(zero, Y, Y) :- nat(Y).
add(succ(X), Y, succ(R)) :- add(X, Y, R), nat(X), nat(Y), nat(R).

sub(X,zero,X) :- nat(X).
sub(succ(X),succ(Y),zero) :- Y = X, nat(X).
sub(succ(X),Y,W) :- W = succ(Z), sub(X,Y,Z), nat(Z).

mult(X,zero,zero) :- nat(X).
mult(X,succ(Y),Z) :- mult(X,Y,V), nat(V), add(V,X,Z), nat(Z).

min(X,Y,X) :- nat(X),nat(Y),leq(X,Y).
min(X,Y,Y) :- nat(X),nat(Y),leq(Y,X).

Hans Hüttel
An alternative solution is

sub1(X,Y,Z) :- add(Y,Z,X).

This says that X - Y = Z if Y + Z = X. To find N1 - N2, simply make the query

sub1(N1-N2,R)

The R returned is the value of N1 - N2.

Problem 2

Use the representations from the solution to the previous problem to formulate and test Prolog queries
that determine if the following equations have a solution:

• x = 1 + 2

• x + 2 = 3

• x · x + 1 = 5

• x ≤ minimum(x, y)

where x and y are natural numbers.

2

Hans Hüttel
solve1(X) :- nat(X), mult(X,succ(X),succ(succ(succ(succ(succ(zero)))))).

solve2(X) :- nat(X), add(X,succ(succ(zero)),succ(succ(succ(zero)))).

solve3(X) :- nat(X), mult(X,X,V), succ(V) = succ(succ(succ(succ(succ(zero))))).

solve4(X,Y) :- nat(X), nat(Y), nat(Z), min(X,Y,Z), leq(X,Z).

Problem 3

Implement the Fibonacci function as a Prolog predicate fib.

Problem 4

Implement Prolog predicates prefix(xs, ys) and suffix(xs, ys) that tell us if the list xs is a prefix or
suffix of ys.

3

Hans Hüttel
fib(0,1).
fib(1,1).
fib(X,Z) :- N1 is X-1, N2 is X-2, fib(N1,Z1), fib(N2,Z2), Z is Z1+Z2.

Hans Hüttel
prefix([],_).
prefix([X|XS],[X|YS]) :- prefix(XS,YS).

suffix([],_).
suffix([X|XS],[X|XS]).
suffix(XS,[_|YS]) :- suffix(XS,YS).

Problem 5

Implement the Prolog predicate double(xs, ys) that tells us that the list ys duplicates every element in
the list xs. As an example, we should have that double([1, 2, 3], [1, 1, 2, 2, 3, 3]).

Problem 6

Implement zip(xs, ys, zs) to compute the pairing of the elements of the lists xs and ys. Then, implement
unzip(xs, rs,ss) for the reverse.

As an example, we should have that

zip([1, 2, 3], [3, 4, 5], [(1, 3), (2, 4), (3, 5)])

and that
unzip([(1, 3), (2, 4), (3, 5)], [1, 2, 3], [3, 4, 5])

4

Hans Hüttel
double([],[]).
double([X|XS],[X|[X|XXS]]) :- double(XS,XXS).

Hans Hüttel
zip([],[],[]).
zip([X|XS],[Y|YS],[(X,Y)|XSYS]) :- zip(XS,YS,XSYS).

unzip([],[],[]).
unzip([(X,Y)|XSYS],[X|XS],[Y|YS]) :- unzip(XSYS,XS,YS).

Problem 7

Implement prefix and suffix in terms of append.

For the miniproject

We can describe a directed graph with weighted edges by 3-place predicate edge.
Below is an example of this can be done. edge(a,b,3) tells us that there is an edge from vertex a

to vertex b with weight 3.

edge(a,b,3).

edge(a,c,5).

edge(b,d,4).

edge(b,a,2).

edge(c,d,4).

Write a predicate leastinpath(X,Y,V) that holds if V is the least weight found in any path from X

to Y. One way of approaching this is to find the list of weights that appears in any path from X to Y, but
do we really need that?

5

Hans Hüttel
append([],YS,YS).
append([X|XS],YS,[X|XSYS]) :- append(XS,YS,XSYS).

prefix1(X,Y) :- append(X,_,Y).
suffix1(X,Y) :- append(_,X,Y).

The last two definitions should remind us that existential quantification is our friend in Prolog.

X is a prefix of Y if there exists some list that, when appended to X, gives us Y.
X is a suffix of Y if there exists some list that, when X is appended to it, gives us Y.

